Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

This paper reviews the problems in radiative transfer for climate modelling and describes the most recent available methods in both shortwave and longwave. The purpose of the paper is to give the general background needed to understand the climate type radiation codes in details and stop on considering it as a black-box. However, this paper makes no choice between particular codes and the question of the validation is left to other more specific publications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arking, A., and K. Grossman, 1972: ‘The influence of line shape and band structure on temperature in planetary atmospheres.’ J. Atmos. Sci., 29, 937–949.

    Article  Google Scholar 

  • Bignell, K. J., 1970: ‘The water-vapour infrared continuum.’ Quart. J. Roy. Meteor. Soc., 96, 390–404.

    Article  Google Scholar 

  • Bougeault, P., 1985: ‘The diurnal cycle of the marine stratocumulus layer: A higher order model study.’ J. Atmos. Sci., 42, 2826–2843.

    Article  Google Scholar 

  • Brezinski, C., 1976: ‘Computation of Pade Approximants and continued fractions.’ J. Comput. Appl. Math., 2, 113–123.

    Article  Google Scholar 

  • Brezinski, C., 1985: ‘Convergence acceleration methods: The past decade.’ J. Comput. Appl. Math., 12–13, 16–39.

    Google Scholar 

  • Budyko, M. I., 1969: ‘The effect of solar radiation variations on the climate of the Earth.’ Tellus, 21, 611–619.

    Article  Google Scholar 

  • Cess, R. D., 1976: ‘Climate change: An appraisal of atmospheric feedback mechanisms employing zonal climatology.’ J. Atmos. Sci., 33, 1831–1843.

    Article  Google Scholar 

  • Coakley, J. A., Jr., and B. P. Briegleb, 1978: ‘Accurate calculations of fluxes and cooling rates using emissivities.’ Preprints 3rd Conf. on Atmos. Radiation, Amer. Meteor. Soc., Boston, Mass., 179–181.

    Google Scholar 

  • Coakley, J. A., and R. C. Cess, 1985: ‘Response of the NCAR Community Climate Model to the radiative forcing by the naturally occurring tropospheric aerosol.’ J. Atmos. Sci., 42, 1677–1692.

    Article  Google Scholar 

  • Crisp, D., S. B. Fels and M. D. Schwartzkopf, 1986: ‘Approximate methods for finding CO2 15 p band transmissions in planetary atmosphere.’ J. Geoph. Res., 91, 11,851–11,866.

    Google Scholar 

  • Curtis, A. R., 1952: ‘Discussion of “A statistical model for water vapour absorption”,’ by R. M. Goody. Quart. J. Roy. Meteor. Soc., 78, 638.

    Article  Google Scholar 

  • Deschamps, P. Y., M. Herman, D. Tanre, 1983: ‘Modélisation du rayonnement solaire réfléchi par l’atmosphère et la terre, entre 35 et 4 m. Rapport ESA 4393/80/F/DD(SC), 156 pp.

    Google Scholar 

  • Domoto, G. A., 1974: ‘Frequency integration for radiative transfer problems involving homogeneous non-gray gases.’ J. Quant. Spectosc. Radlat. Transfer, 14, 935–942.

    Article  Google Scholar 

  • Ellingson, R. G., 1972: ‘A new longwave radiative transfer model: Calibration and application to the tropical atmosphere.’ Ph.D. Thesis, Dept. of Meteorology, Florida State Univ., Rep. 72–4, 348 pp.

    Google Scholar 

  • Ellingson, R. G., and J. C. Gille, 1978: ‘An infrared transfer model. 1 Model description and comparison of observations with calculations.’ J. Atmos. Sci., 35, 523–545.

    Article  Google Scholar 

  • Ellis, J., and T. H. Vonder Haar, 1976: ‘Zonal average earth radiation budget measurements from satellite for climate studies.’ Atmos. Sci. Paper 240, Colorado State University.

    Google Scholar 

  • Elsasser, W. M., 1942: ‘Heat transfer by infrared radiation in the atmosphere.’ Harvard Meteorological Studies No. 6. Harvard University Press, 43 pp.

    Google Scholar 

  • Fels, S., and M. D. Schwartzkopf, 1975: ‘The simplified exchange approximation. A new method for radiative transfer calculations.’ J. Atmos. Sci., 32, 1475–1488.

    Article  Google Scholar 

  • Fels, S., 1979: ‘Simple strategies for inclusion of Voigt effects in infrared cooling rate calculations.’ Appl. Opt., 18,, 2634–2637.

    Article  Google Scholar 

  • Fouquart, Y., 1974: ‘Utilisation des approximants de Padé pour l’étude des largeurs équivalentes des raies formées en atmosphère diffusante.’ J. Quant. Spectrosc. Radiat. Transfer, 14, 497–508.

    Article  Google Scholar 

  • Fouquart, Y., 1985: ‘Radiation in boundary layer clouds.’ In Report of the JSC/CAS Workshop on Modelling of Cloud-Topped Boundary Layer. Fort Collins, Colorado, USA, 22–26 April 1985, WCP 106. Available from World Climate Research Programme, Geneva.

    Google Scholar 

  • Fouquart, Y., and B. Bonnel, 1980: ‘Computations of solar heating of the earth’s atmosphere: A new parameterization.’ Beitr. Phys. Atmosph., 53, 35–62.

    Google Scholar 

  • Fravalo, C., Y. Fouquart and R. Rosset, 1981: ‘The sensitivity of a model of low stratiform clouds to radiation.’ J. Atmos. Sci., 38, 1049–1062.

    Article  Google Scholar 

  • Garand, L., 1983: ‘Some improvements and complements to the infrared-emissivity algorithm including a parameterization of the absorption in the continuum region.’ J. Atmos. Sci., 40, 230–244.

    Article  Google Scholar 

  • Geleyn, J. F., and A. Hollingsworth, 1979: ‘An economical analytical method for the computation of the interaction between scattering and line absorption of radiation.’ Contrib. Atmos. Phys., 52, 1–16.

    Google Scholar 

  • GARP (Global Atmospheric Research Programme), 1975: ‘The physical basis of climate and climate modelling.’ Report of the international study conference, Stockholm, 29 July – 10 August 1974, WMO, Geneva. GARP Publication Series No. 16, 265 pp.

    Google Scholar 

  • Godson, W. L., 1954: ‘Spectral models and the properties of transmission functions.’ Proc. Toronto Meteor. Conf., 1953, Roy. Meteor. Soc., Berkshire, UK, 35–42.

    Google Scholar 

  • Goody, R. M., 1952: ‘A statistical model for water vapour absorption.’ Quart. J. Roy. Meteor. Soc., 78, 165–169.

    Article  Google Scholar 

  • Goody, R. M., 1964a: Atmospheric Radiation I; Theoretical Basis. Clarendon Press, 436 pp.

    Google Scholar 

  • Goody, R. M., 1964b: ‘The transmission of radiation through an inhomogeneous atmosphere.’ J. Atmos. Sci., 21, 575–581.

    Article  Google Scholar 

  • Handbook of Geophysics and Space Environments, 1965. Ed. S. L. Valley, AFCRL Office of Aerospace Research, U.S. Air Force.

    Google Scholar 

  • Hansen, J. E., G. Russel, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy and L. Travis, 1983: ‘Efficient three-dimensional global models for climate studies: Models I and II.’ Mon. Wea. Rev., 111, 609–662.

    Article  Google Scholar 

  • Harshvardhan, and J. A. Weinmann, 1982: ‘Infrared radiative transfer through a regular array of cuboidal clouds.’ J. Atmos. Sci., 39, 431–439.

    Article  Google Scholar 

  • Herman, G. F., and W. T. Johnson, 1980: ‘Arctic and Antarctic climatology of the GLAS GCM.’ Mon. Wea. Rev., 108, 1974–1991.

    Article  Google Scholar 

  • Hickey, J., L. Stowe, H. Jacobwitz, P. Maschoff, A. Arking, J. House, A. Ingersoll and T. H. Vonder Haar, 1980: ‘Initial solar irradiance determination from Nimbus 7 cavity radiometer measurements.’ Science, 208, 281–283.

    Article  Google Scholar 

  • Houghton, J. T., and S. D. Smith, 1966: Infra-red Physics. Oxford Clarendon Press, 319 pp.

    Google Scholar 

  • Hunt, G. E., and S. R. Mattingly, 1976: ‘Infrared radiative transfer in planetary atmospheres: 1 – Effects of computational and spectroscopic economies on thermal heating/cooling rates.’ J. Quant. Spectrosc. Radiat. Transfer, 16, 505–520.

    Article  Google Scholar 

  • Husson, N., A. Chedin, N. A. Scott, I. Cohen-Hallaleh and A. Berroir, 1982: ‘La banque de donées “GEISA”: Mise à jour n° 3. Note LMP No. 116, 81 pp. Available from Laboratoire de Météorologie Dynamique Ecole Polytechnique 92 Palaiseau.

    Google Scholar 

  • Irvine, W. M., and J. B. Pollack, 1968: ‘Infrared optical properties of water and ice spheres.’ Icarus, 8, 324–360.

    Article  Google Scholar 

  • Joseph, J. H., W. J. Wiscombe and J. A. Weinmann, 1976: ‘Solar flux transfer through turbid atmospheres evaluated by the Eddington approximation.’ J. Atmos. Sci., 33, 2452–2459.

    Article  Google Scholar 

  • Joseph, J. H., 1976: ‘The effect of a desert aerosol on a model of the general circulation.’ Proceedings Symposium on Radiation in the Atmosphere. Ed. H. J. Bolle, Science – Press, 1977.

    Google Scholar 

  • Katayama, A., 1972: A simplified scheme for computing radiative transfer in the troposphere. Tech. Rep. 6, Dept. of Meteorology, UCLA, 77 pp.

    Google Scholar 

  • Kiehl, J. T., and V. Ramanathan, 1982: ‘The role of H2O continuum absorption in the 12–18 micron region. J. Atmos. Sci., 39, 2923–2926.

    Article  Google Scholar 

  • Labs, D., and H. Neckel, 1970: ‘Transformation of the absolute solar radiation data into the “International Practical Temperature Scale of 1968”.’ Solar Phys., 15, 79–87.

    Article  Google Scholar 

  • Lacis, A. A., and J. E. Hansen, 1974: ‘A parameterization for the absorption of solar radiation in the earth’s atmosphere.’ J. Atmos. Sci., 31, 118–133.

    Article  Google Scholar 

  • Lacis, A. A., W. C. Wang and J. E. Hansen, 1979: Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate. NASA Conf. Publ. 2029, ed. E. R. Kreins.

    Google Scholar 

  • Lenoble, J., 1977: ‘Standard procedures to compute atmospheric radiative transfer in scattering atmospheres.’ Proc. IAMAP Radiation Commission, NCAR Boulder, 125 pp (see pp 93–96).

    Google Scholar 

  • Lenoble, J., D. Tanre, P. Y. Deschamps and M. Herman, 1982: ‘A simple method to compute the change in the earth-atmosphere radiative balance due to a stratospheric aerosol layer.’ J. Atmos. Sci., 39, 2565–2576.

    Article  Google Scholar 

  • Liou, K. N., 1972: ‘Light scattering by ice clouds in the visible and infrared: A theoretical study.’ J. Atmos. Sci., 29, 524–536.

    Article  Google Scholar 

  • Liou, K. N., 1980: ‘An introduction to atmospheric radiation.’ Int. Geophys. Ser., 25, Academic Press, 392 pp.

    Google Scholar 

  • Liou, K. N., 1986: ‘Influence of cirrus clouds on weather and climate processes: A global perspective.’ Mon. Wea. Rev., 114, 1167–1199.

    Article  Google Scholar 

  • Liou, K. N., and S. C. S. Ou, 1981: ‘Parameterization of infrared radiative transfer in cloudy atmospheres.’ J. Atmos. Sci., 38, 2707–2716.

    Article  Google Scholar 

  • Luther, F. M., 1982: ‘Radiative effects of a C02 increase: Results of a model comparison.’ In Proceedings of the Carbon Dioxide Research Conference: Carbon Dioxide, Science and Consensus, Berkeley Springs, WV, Sept. 19–23, 1982, DOE CONF-820970, p. III.117–III.193.

    Google Scholar 

  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz and J. S. Garing, 1971: ‘Optical properties of the atmosphere.’ AFCRL 71–0279, Air Force Cambridge Research Laboratories, Envir. Res. Papers Bedford, MA, 85 pp.

    Google Scholar 

  • Mlatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz and J. S. Garing, 1972: ‘Optical properties of the atmosphere.’ 3rd éd., AFCRL-TR-72–0497, Environment Research Paper 411, Bedford, Mass.

    Google Scholar 

  • Malkmus. W., 1967: ‘Random Lorenz band models with exponential tailed S–1 line intensity distribution function.’ J. Opt. Soc. Amer., 57, 323–329.

    Article  Google Scholar 

  • Manabe, S., and R. Strickler, 1964: ‘Thermal equilibrium of the atmosphere with a convective adjustment.’ J. Atmos. Sci., 21, 361–385.

    Article  Google Scholar 

  • Meador, W. E., and W. R. Weaver, 1980: ‘Two stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a near improvement.’ J. Atmos. Sci., 37, 630–643.

    Article  Google Scholar 

  • Morcrette, J. J., 1978: ‘Infrared fluxes In stratiform model clouds.’ Beltr. Phys. Atmos., 51, 338–351.

    Google Scholar 

  • Morcrette, J. J., 1984: ‘Sur la parametrisation du rayonnement dans les modèles de la circulation générale atmosphérique.’ Thèse de doctorat d’état, n° 630, University of Lille, France, 371 pp.

    Google Scholar 

  • Morcrette, J. J., and Y. Fouquart, 1985: ‘On systematic errors in parameterized calculations of longwave radiation transfer.’ Quart. J. Roy. Meteor. Soc., 111, 691–708.

    Article  Google Scholar 

  • Morcrette, J. J., L. Smith and Y. Fouquart, 1986: ‘Pressure and temperature dependence of the absorption in longwave radiation parameterizations.’ Beitr. Phys. Atmosph.,59, 455–469.

    Google Scholar 

  • Morcrette, J. J., and Y. Fouquart, 1986: ‘On the overlapping of cloud layers in shortwave radiation parameterizations.’ J. Atmos. Sci., 43, 321–328

    Article  Google Scholar 

  • Neckel, H., and D. Labs, 1984: ‘The solar radiance between 3300 and 12500Â.’ Solar Phys., 90, 205–258.

    Article  Google Scholar 

  • Nicholls, S., 1984: ‘The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model.’ Quart. J. Roy. Meteor. Soc., 110, 783–820.

    Article  Google Scholar 

  • Paltridge, G. W. 1974: ‘Infrared emissivity, shortwave albedo and the microphysics of stratiform water clouds.’ J. Geophys. Res., 79, 4053–4058.

    Article  Google Scholar 

  • Paltridge, G. W., and C. M. R. Piatt, 1976: Radiative Processes in Meteorology and Climatology. Elsevier, 318 pp.

    Google Scholar 

  • Paltridge, G. W., and C. M. R. Piatt, 1981: ‘Aircraft measurements of solar and infrared radiation and the microphysics of cirrus cloud.’ Quart. J. Roy. Meteor. Soc., 107, 367–380.

    Article  Google Scholar 

  • Piatt, C. M. R., 1973: ‘Lidar and radiometric observations of cirrus clouds.’ J. Atmos. Sci., 30, 1191–1204.

    Article  Google Scholar 

  • Piatt, C. M. R., D. W. Reynolds and N. L. Abshire, 1980: ‘Satellite and lidar observations of the albedo, emittance and optical depth of cirrus compared to model calculations.’ J. Atmos. Sci., 108, 195–204.

    Google Scholar 

  • Ramanathan, V., and P. Downey, 1986: ‘A non-thermal emissivity and absorptivity formulation for water vapor.’ J. Geoph. Res., 91, 8649–8666.

    Article  Google Scholar 

  • Ramanathan, V., E. J. Pitcher, R. C. Malon and M. L. Blackman, 1983: ‘The response of a spectral general circulation model to refinements in radiative processes.’ J. Atmos. Sci., 40, 605–630.

    Article  Google Scholar 

  • Roberts, R. E., J. E. Selby and L. M. Biberman, 1976: ‘Infrared continuum absorption by atmospheric water vapour in the 8–12 pm window.’ Appl. Opt., 15, 2085–2090.

    Article  Google Scholar 

  • Rodgers, C. D., and C. D. Walshaw, 1966: ‘The compilation of infrared cooling rates in planetary atmospheres.’ Quart. J. Roy. Meteor. Soc., 92, 67–92.

    Article  Google Scholar 

  • Rodgers, C. D., 1967: ‘The use of emissivity in atmospheric radiation calculations.’ Quart. J. Roy. Meteor. Soc., 93, 43–54.

    Article  Google Scholar 

  • Rodgers, C. D., and C. D. Walshaw, 1966: ‘The computation of infrared cooling rate in planetary atmospheres.’ Quart. J. Roy. Meteor. Soc., 92, 67–92.

    Article  Google Scholar 

  • Rothman, L. S., 1981: ‘AFGL atmospheric absorption line parameters compilation: 1980 version.’ Appl. Opt., 20, 791–795.

    Article  Google Scholar 

  • Schaller, E., 1979: ‘A delta two-stream approximation in radiative flux calculations.’ Beltr. Phys. Atmos., 52, 17–26.

    Google Scholar 

  • Schmetz, J., E. Raschke and H. Fimpel, 1981: ‘Solar and thermal radiation in maritime stratocumulus clouds.’ Beitr. Phys. Atmos., 54, 442–452.

    Google Scholar 

  • Schmetz, J., 1984: ‘On the parameterization of the radiative properties of broken clouds.’ Tellus, 36A, 417–432.

    Article  Google Scholar 

  • Schneider, S. H., and C. Mass, 1975: ‘Volcanic dust, sunspots and temperature trends.’ Science, 190, 741–746.

    Google Scholar 

  • Scott, N. A., and A. Chedin, 1981: ‘A fast line-by-line method for atmospheric absorption computations: The automatized atmospheric absorption atlas.’ J. Appl. Meteor., 20, 802–812.

    Article  Google Scholar 

  • Selby, J. E. A., F. X. Kneizys, J. H. Chetwynd and R. A. Mlatchey, 1978: ‘Atmospheric transmittance/radiance: Computer Code L0WTRAN 4.’ AFGL-TR-0053 Envir. Res. Papers No. 587, 79 pp.

    Google Scholar 

  • Sellers, W. D., 1969: ‘A global climate model based on the energy balance of the Earth-atmosphere system.’ J. Appl. Meteor., 8, 392–400.

    Article  Google Scholar 

  • Slingo, A., S. Nichols and J. Schmetz, 1982: ‘Aircraft observations of marine stratocumulus during JASIN.’ Quart. J. Roy. Meteor. Soc., 108, 833–856.

    Article  Google Scholar 

  • Slingo, A., and H. M. Schrecker, 1982: ‘On the shortwave radiative properties of stratiform water clouds.’ Quart. J. Roy. Meteor. Soc., 108, 407–426.

    Article  Google Scholar 

  • Smith, H. J. P., D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneysis and L. S. Rothman, 1978: FASCODE: Fast Atmospheric Signature Code. AFGL TR 78 0081, Air Force Geophysics Laboratory, Hanscom, Ma., 149 pp.

    Google Scholar 

  • Stephens, G. L., 1978: ‘Radiation profiles in extended water clouds. Is Theory.’ J. Atmos. Sci., 35, 2111–2122.

    Article  Google Scholar 

  • Stephens, G. L., 19?9: ‘Optical properties of eight water cloud types.’ CSIRO Aust. Dlv. Atmos. Phys. Tech. Paper No. 36, 1–35.

    Google Scholar 

  • Stephens, G. L., 1984: ‘A review of the parameterizations of radiation for numerical weather prediction models.’ Mon. Wea. Rev., 112, 826–867.

    Article  Google Scholar 

  • Stephens, G. L., G. W. Paltridge and C. M. R. Piatt, 1978: ‘Radiative profiles in extended water clouds. II: Observations.’ J. Atmos. Sci., 35, 2133–2141.

    Article  Google Scholar 

  • Stephens, G. L., G. G. Campbell and T. H. Vonder Haar, 1981: ‘Earth radiation budgets.’ J. Geophys. Res., 86, 9739–9760.

    Article  Google Scholar 

  • Tanre, D., J.-F. Geleyn and J. Slingo, 1984: ‘First results of the Introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution global model. In Aerosols and Their Climatic Effects. Eds. H. Gerber and A. Deepak, Deepak Pub., 294 pp.

    Google Scholar 

  • Veyre, P., G. Sommeria and Y. Fouquart, 1980: ‘Modélisation de l’effet des hétérogénéités du champ radiatif infrarouge sur la dynamique des nuages.’ J. Rech. Atmos., 14, 89–108.

    Google Scholar 

  • Walshaw, C. D., and C. D. Rodgers, 1963: ‘The effect of the Curtis-Godson approximation on the accuracy of radiative heating rate calculations.’ Quart. J. Roy. Meteor. Soc., 89, 122–130.

    Article  Google Scholar 

  • Wang, W. C., and P. B. Ryan, 1983: ‘Overlapping effect of atmospheric H20, C02 and 03 on the CO2 radiative effect.’ Tellus, 35B, 81–91.

    Article  Google Scholar 

  • Wang, W. C., 1983: ‘Effects of approximate radiation treatments used in the climate models on the clear sky thermal radiation flux and its perturbation due to CO2 increase.’ DOE/ER/60023–1 – Contract DE-AC 02–81 ER 600023, Atmospheric and Environmental Research, Inc., Cambridge, Mass.

    Google Scholar 

  • Washington, W. M., and D. L. Williamson, 1977: ‘A description of the NCAR GCM.’ In General Circulation Models of the Atmosphere, Methods in Computational Physics, 17. Ed. J. Chang. Academic Press, 111–172.

    Google Scholar 

  • WCP, 1983: ‘Report of the experts meeting on aerosols and their climatic effects.’ Williamsburgh, Virginia, 28–30 March 1983, 107 pp., WCP 55. Available from World Climate Research Programme, Geneva.

    Google Scholar 

  • WCP, 1984: ‘The intercomparison of radiation codes for climate models: Longwave clear-sky calculations.’ Ed. F. M. Luther. WCP 93. Available from World Climate Research Programme, Geneva.

    Google Scholar 

  • Welch, R. M., and W. G. Zdunkowski, 1982: ‘Backscattering approximations and their influence on Eddington-type solar flux calculations.’ Beitr. Phys. Atmos., 55, 28–42.

    Google Scholar 

  • Wetherald, R. T., and S. Manabe, 1975: ‘The effect of changing the solar constant on the climate of a general circulation model.’ J. Atmos. Sci., 32, 2044–2059.

    Article  Google Scholar 

  • Wetherald, R. T., and S. Manabe, 1980: ‘Cloud cover and climate sensitivity.’ J. Atmos. Sci., 37, 1485–1510.

    Article  Google Scholar 

  • Wiscombe, W. J., and J. W. Evans, 1977: ‘Exponential sum fitting of radiative transmission functions.’ J. Comp. Phys., 24, 416–444.

    Article  Google Scholar 

  • Wu, M. L., 1980: ‘The exchange of infrared radiative energy in the troposphere.’ J. Geophys. Res., 85, 4084–4090.

    Article  Google Scholar 

  • Zdunkowski, W. G., R. M. Welch and G. Korb, 1980: ‘An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds.’ Beitr. Phys. Atmosph., 53, 147–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fouquart, Y. (1988). Radiative Transfer in Climate Models. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3041-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3041-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7867-2

  • Online ISBN: 978-94-009-3041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics