Skip to main content

Some Aspects of Excited-State Probe Emission Spectroscopy for Structure and Dynamics of Model and Biological Membranes

  • Chapter
Polarized Spectroscopy of Ordered Systems

Part of the book series: NATO ASI Series ((ASIC,volume 242))

Abstract

An overview of some of the techniques by which certain structural (order, organization) and dynamic (fluidity, diffusion) features of simple model and complex biological lipid bilayer membranes can be elucidated by using certain properties of electronically excited states of appropriate probe molecules will be presented. A detailed knowledge of such features may be indispensable to a proper understanding of the function of cell membranes in various regulatory processes and of their dysfunction in pathological states such as cancer. The excited states, created by the absorption of visible or near ultraviolet light, and monitored by the subsequent emission of light quanta at longer wavelengths which takes place in nanoseconds (fluorescence) or micro- to milliseconds (phosphorescence, delayed fluorescence), exhibit reactive, directional and donatory properties which can be utilized to quantitate lateral diffusion, rotational diffusion, orientational order and topographical distribution of the probe, which may or may not be chemically attached to, and thereby reflect the motion or distribution of, another membrane-located molecular or macromolecular species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • P.M.Bayley & R.E.Dale (eds), Spectroscopy and the Dynamics of Molecular Biological Systems, Academic Press, New York (1985)

    Google Scholar 

  • R.B.Cundall & R.E.Dale (eds), Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology, NATO ASI Series A: Life Sciences, Volume 69, Plenum Press, New York (1983)

    Google Scholar 

  • J.Michl & E.W.Thulstrup, Spectroscopy with Polarized Light, VCH Publishers, New York (1986)

    Google Scholar 

  • D.V.O’Connor & D.Phillips, Time-correlated Single Photon Counting, Academic Press, New York (1984)

    Google Scholar 

  • Â.G.Szabo & L.Masotti (eds), Excited-state Probes in Biochemistry and Biology, NATO ASI Series A: Life Sciences, Plenum Press, New York (in preparation)

    Google Scholar 

  • D.L.Taylor, A.S.Waggoner, R.F.Murphy, F.Lanni & R.R.Birge (eds), Applications of Fluorescence in the Biomedical Sciences, Alan R.Liss, New York (1986)

    Google Scholar 

  • A.J.W.G.Visser (ed), Time Resolved Fluorescence Spectroscopy, Volume 14, Nos. 3 & 4 of Analytical Instrumentation (1985)

    Google Scholar 

Review Articles

  • J.Altman, Inositol phosphates. Ins and outs of cell signalling. Nature 331: 119–120 (1988)

    Article  PubMed  CAS  Google Scholar 

  • D.Axelrod, T.P.Burghardt & N.L.Thompson, Total internal reflection fluorescence. Annu.Rev.Biophys.Bioeng. 13: 247–268 (1984)

    Article  PubMed  CAS  Google Scholar 

  • M.G.Badea & L.Brand, Time-resolved fluorescence measurements. Meth.Enzymol. 61: 378–425 (1979)

    Article  PubMed  CAS  Google Scholar 

  • M.J.Berridge, Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu.Rev.Biochem. 56: 159–193 (1987)

    Article  PubMed  CAS  Google Scholar 

  • E.Blatt & W.H.Sawyer, Depth-dependent fluorescent quenching in micelles and membranes. Biochem.Biophys.Acta 822: 43–62 (1985)

    PubMed  CAS  Google Scholar 

  • R.E.Dale, Biology -a happy hunting ground for the time-resolved fluorescence depolarization spectroscopist. Stud.Biophys. 121: 5–24 (1987)

    CAS  Google Scholar 

  • E.L.Elson, Fluorescence correlation spectroscopy and photobleaching recovery. Annu.Rev.Phys.Chem. 36: 379–406 (1985)

    Article  CAS  Google Scholar 

  • E.Gratton, D.M.Jameson & R.D.Hall, Multifrequency phase and modulation fluorometry. Annu.Rev.Biophys.Bioeng. 13: 105–124 (1984)

    Article  PubMed  CAS  Google Scholar 

  • D.M.Jameson, E.Gratton & R.D.Hall, The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl.Spectrosc.Rev. 20: 55–106 (1984)

    Article  CAS  Google Scholar 

  • L.B.-Å.Johansson & G.Lindblom, Orientation and mobility of molecules in membranes studied by polarized light spectroscopy. Quart. Rev.Biophys. 13: 63–118 (1980)

    Article  CAS  Google Scholar 

  • K.Kinosita,Jr., S.Kawato & A.Ikegami, Dynamic structure of biological model membranes: analysis by optical anisotropy decay measurement. Adv.Biophys. 17: 147–203 (1984)

    Article  PubMed  Google Scholar 

  • D.E.Koppel, Fluorescence photobleaching as a probe of translational and rotational motions. In: R.I.Sha’afi & S.M.Fernandez (eds), Fast Methods in Physical Biochemistry and Cell Biology,Elsevier, New York, Chapter 11, pp.339–367 (1983)

    Google Scholar 

  • W.R.Lieb & W.D.Stein, Non-Stokesian nature of transverse diffusion within human red cell membranes. J.Mem.Biol. 92: 111–119 (1985)

    Article  Google Scholar 

  • B.Nordén, Applications of linear dichroism spectroscopy. Appl.Spectrosc.Rev. 14: 157–248 (1978)

    Article  Google Scholar 

  • F.Schroeder, Fluorescent sterols: probe molecules of membrane structure and function. Progr.Lipid Res. 23: 97–113 (1984)

    Article  CAS  Google Scholar 

  • F.Schroeder, Fluorescence probes unravel asymmetric structure of membranes. In: D.B.Roodyn (ed), Subcellular Biochemistry, Plenum Press, New York, Chapter 2, pp.51–101 (1985)

    Google Scholar 

  • M.Shinitzky, Membrane fluidity and cellular functions. In: M.Shinitzky (ed), Physiology of Membrane Fluidity, CRC Press, Boca Raton, Florida, Volume I, pp.1–51 (1984)

    Google Scholar 

  • M.Shinitzky, Membrane fluidity and receptor function. In: M.Kates & L.A.Manson (eds), Membrane Fluidity, Volume 12 of L.A.Manson (ed), Biomembranes, Plenum, New York, Chapter 20, pp.585–601 (1984)

    Google Scholar 

  • M.Shinitzky & I.Yuli, Lipid fluidity at the submacroscopic level: determination by fluorescence polarization. Chem.Phys.Lipids 30: 261–282 (1982)

    Article  CAS  Google Scholar 

  • S.J.Singer & G.L.Nicolson, The fluid mosaic model of the structure of cell membranes. Science 175: 720–731 (1972)

    Article  PubMed  CAS  Google Scholar 

  • L.Stryer, Fluorescence energy transfer as a spectroscopic ruler. ånnu.Rev.Biochem. 47: 819–846 (1978)

    Article  PubMed  CAS  Google Scholar 

  • L.Stryer, D.D.Thomas & C.F.Meares, Diffusion-enhanced fluorescence energy transfer. Annu.Rev.Biophys.Bioeng. 11: 203–222 (1982)

    Article  PubMed  CAS  Google Scholar 

  • W.L.C.Vaz, F.Goodsaid-Zalduondo & K.Jacobson, Lateral diffusion of lipids and proteins in bilayer membranes, FEBS Lett. 174: 199–207 (1984)

    Article  CAS  Google Scholar 

  • J.Yguerabide & E.E.Yguerabide, Role of membrane fluidity in the expression of biological functions. In: A.N.Martonosi (ed), Membrane Structure and Function, Volume 1 of The Enzymes of Biological Membranes (2nd Edn), Plenum, New York, Chapter 12, pp.393–420 (1984)

    Google Scholar 

  • C.Zannoni, A.Arcioni & P.Cavatorta, Fluorescence depolarization in liquid crystals and membrane bilayers. Chem.Phys.Lipids 32: 179–250 (1983)

    Article  CAS  Google Scholar 

Original Articles

  • M.Ameloot, H.Hendrickx, W.Herreman, H.Pottel, F.Van Cauwelaert & W.van der Meer, Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. Biophys.J. 46: 525–539 (1984)

    Article  PubMed  CAS  Google Scholar 

  • D.Axelrod, Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys.J. 26: 557–573 (1979)

    Article  PubMed  CAS  Google Scholar 

  • D.Axelrod, D.E.Koppel, J.Schlessinger, E.Elson & W.W.Webb, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys.J. 16: 1055–1069 (1976)

    Article  PubMed  CAS  Google Scholar 

  • D.A.Barrow & B.R.Lentz, Membrane structural domains. Resolution limits using diphenylhexatriene fluorescence decay. Biophys.J. 48: 221–234 (1985)

    Article  PubMed  CAS  Google Scholar 

  • M.Bartholdi, F.J.Barrantes & T.M.Jovin, Rotational molecular dynamics of the membrane-bound acetylcholine receptor revealed by phosphorescence spectroscopy. Eur.J.Biochem. 120: 389–397 (1981)

    Article  PubMed  CAS  Google Scholar 

  • J.M.Beechem, J.R.Knutson, J.B.A.Ross, B.J.Turner & L.Brand. Global resolution of heterogeneous decay by phase/modulation fluorometry: mixtures and proteins. Biochemistry 22: 6054–6058 (1983)

    Article  CAS  Google Scholar 

  • L.Best, E.John & F.Jahnig, Order and fluidity of lipid membranes as determined by fluorescence anisotropy decay. Eur.Biophys.J. 15: 87–102 (1987)

    Article  CAS  Google Scholar 

  • M.F.Blackwell, K.Gounaris & J.Barber, Evidence that pyrene excimer formation in membranes is not diffusion-controlled. Biochim.Biophys.Acta 858: 221–234 (1986)

    Article  PubMed  CAS  Google Scholar 

  • M.F.Blackwell, K.Gounaris, S.J.Zara & J.Barber, A method for estimating lateral diffusion coefficients in membranes from steady-state fluorescence quenching studies. Biophys.J. 51: 735–744 (1987)

    Article  PubMed  CAS  Google Scholar 

  • M.Bouchy, M.Donner & J.C.André, Evolution of fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) during the labelling of living cells. Exp.Cell Res. 133: 39–46 (1981)

    Article  PubMed  CAS  Google Scholar 

  • T.P.Burghardt, Time-resolved fluorescence polarization from ordered biological assemblies. Biophys.J. 48: 623–631 (1985)

    Article  PubMed  CAS  Google Scholar 

  • T.P.Burghardt & K.Ajtai, Model-independent time-resolved fluorescence depolarization from ordered biological assemblies applied to restricted motion of myosin cross-bridges in muscle fibers. Biochemistry 25: 3469–3478 (1986)

    Article  PubMed  CAS  Google Scholar 

  • A.F.Corin, E.Blatt & T.M.Jovin, Triplet-state detection of labeled proteins using fluorescence recovery spectroscopy. Biochemistry 26: 2207–2217 (1987)

    Article  PubMed  CAS  Google Scholar 

  • A.R.Cossins & A.G.MacDonald, Homeoviscous theory under pressure. II. The molecular order of membranes from deep-sea fish. Biochim.Biophys.Acta 776: 144–150 (1984)

    Article  CAS  Google Scholar 

  • D.Daems, M.Van den Zegel, N.Boens & F.C.De Schryver, Fluorescence decay of pyrene in small and large unilamellar L,α-dipalmitoylphosphatidylcholine vesicles above and below the phase transition temperature. Eur.Biophys.J. 12: 97–105 (1985)

    Article  PubMed  CAS  Google Scholar 

  • R.E.Dale, Interpretation of fluorescence photobleaching recovery experiments on oriented cell membranes. FEBS Lett. 192: 255–258 (1985)

    Article  PubMed  CAS  Google Scholar 

  • R.E.Dale, Depolarized fluorescence photobleaching recovery. Eur.Biophys.J. 14: 179–193 (1987)

    Article  Google Scholar 

  • R.E.Dale, J.Eisinger & W.E.Blumberg, The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys.J. 26: 161–193 (1979); 30: 365 (1980)

    Article  PubMed  CAS  Google Scholar 

  • L.Davenport, R.E.Dale, R.H.Bisby & R.B.Cundall, Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24: 4097–4108 (1985)

    Article  PubMed  CAS  Google Scholar 

  • L.Davenport, J.R.Knutson & L.Brand, Anisotropy decay associated fluorescence spectra and analysis of rotational heterogeneity. 2. 1,6-diphenyl-1,3,5-hexatriene in lipid bilayers. Biochemistry 25: 1811–1816 (1986)

    Article  PubMed  CAS  Google Scholar 

  • L.Davenport, J.R.Knutson & L.Brand, Studies of membrane heterogeneity using fluorescence associative techniques. Faraday Discuss. Chem.Soc. 81: 81–94 (1986)

    Article  PubMed  CAS  Google Scholar 

  • M.Edidin & M.Wier, Mobility of membrane proteins and the social life of cells. Biochem.Soc.Trans. 14: 818–821 (1986)

    PubMed  CAS  Google Scholar 

  • J.Eisinger & J.Flores, Fluorometry of turbid and absorbant samples and the membrane fluidity of intact erythrocytes. Biophys.J. 48: 77–84 (1985)

    Article  PubMed  CAS  Google Scholar 

  • J.Eisinger, J.Flores &W.P.Petersen, A milling crowd model for local and long-range obstructed lateral diffusion. Mobility of excimeric probes in the membrane of intact erythrocytes. Biophys.J. 49: 987–1001 (1986)

    Article  PubMed  CAS  Google Scholar 

  • R.Fiorini, M.Valentino, S.Wang, M.Glaser & E.Gratton, Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles. Biochemistry 26: 3864–3870 (1987)

    Article  PubMed  CAS  Google Scholar 

  • R.T.Fischer,F.A.Stephenson, A.Shafiee & F.Schroeder,Δ5,7,9(11)-cholestatrien-3ß-ol: a fluorescent cholesterol analogue. Chem.Phys.Lipids 36: 1–14 (1984)

    Article  PubMed  CAS  Google Scholar 

  • J.J.Fisz, Fluorescence depolarization in macroscopically ordered uniaxial molecular samples. I. Chem.Phys. 99: 177–191 (1985)

    Article  CAS  Google Scholar 

  • J.J.Fisz, Symmetry simplifications in the description of molecular order and reorientational dynamics in uniaxial molecular systems. I. Symmetry constraints on the joint probability distribution function. Chem.Phys. 114: 165–185 (1987)

    Article  Google Scholar 

  • A.J.C.Fulford & W.E.Peel, Lateral pressures in biomembranes estimated from the dynamics of fluorescent probes. Biochim.Biophys.Acta 598: 237–246 (1980)

    Article  PubMed  CAS  Google Scholar 

  • A.O.Ganago, Gy.I.Garab & A.Faludi-Dániel, Analysis of linearly polarized fluorescence of chloroplasts oriented in polyacrylamide gel. Biochim.Biophys.Acta 723: 287–293 (1983)

    Article  CAS  Google Scholar 

  • R.Greinert, H.Staerk, A.Stier & A.Weller, E-type delayed fluorescence depolarization, a technique to probe rotational motion in the microsecond range. J.Biochem.Biophys.Methods 1: 77–83 (1979)

    Article  PubMed  CAS  Google Scholar 

  • D.Grunberger, R.Haimovitz & M.Shinitzky, Resolution of plasma membrane fluidity in intact cells labelled with diphenylhexatriene. Biochim.Biophys.Acta 688: 764-774 (1982)

    Article  PubMed  CAS  Google Scholar 

  • M.P.Heyn, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett. 108: 359-364 (1979)

    Article  PubMed  CAS  Google Scholar 

  • B.D.Hughes, B.A.Pailthorpe & L.R.White, The translational and rotational drag on a cylinder moving in a membrane. J.Fluid Mech. 110: 349–372 (1981)

    Article  CAS  Google Scholar 

  • B.D.Hughes, B.A.Pailthorpe, L.R.White & W.H.Sawyer, Extraction of membrane microviscosity from translational and rotational diffusion coefficients. Biophys.J. 37: 673–676 (1982)

    PubMed  CAS  Google Scholar 

  • F.Jähnig, Structural order of lipids and proteins in membranes. Evaluation of fluorescence anisotropy data. Proc.Natl.Acad. Sei.USA 76: 6361–6365 (1979)

    Article  Google Scholar 

  • L.B.-A.Johansson, Order parameters of fluorophores in ground and excited states. Probe molecules in a lyotropic liquid crystal. Chem.Phys.Lett. 118: 516–521 (1985)

    Article  CAS  Google Scholar 

  • P.Johnson & P.B.Garland, Depolarization of fluorescence depletion. A microscopic method for measuring rotational diffusion of membrane proteins on the surface of a single cell. FEBS Lett. 132: 252–256 (1981)

    Article  PubMed  CAS  Google Scholar 

  • D.B.Kell, Diffusion of protein complexes in prokaryotic membranes: fast, free, random or directed? Trends Biochem.Sei.(TIBS) 9: 86–88 (1984)

    Article  Google Scholar 

  • D.B.Kell, Constraints on the lateral diffusion of membrane proteins in prokaryotes. Trends Biochem.Sei.(TIBS) 9: 379 (1984)

    Article  CAS  Google Scholar 

  • K.Kinosita,Jr., S.Kawato & A.Ikegami, A theory of fluorescence polarization decay in membranes. Biophys.J. 20: 289–305 (1977)

    Article  PubMed  CAS  Google Scholar 

  • K.Kinosita,Jr., A.Ikegami & S.Kawato, On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys.J. 37: 461–464 (1982)

    Article  PubMed  CAS  Google Scholar 

  • A.M.Kleinfeld, P.Dragsten, R.D.Klausner, W.J.Pjura & E.D.Matayoshi, The lack of relationship between fluorescence polarization and lateral diffusion in biological membranes. Biochim.Biophys. Acta 649: 471–480 (1981)

    Article  PubMed  CAS  Google Scholar 

  • J.R.Knutson, J.M.Beechem & L.Brand, Simultaneous analysis of multiple fluorescence decay curves: a global approach. Chem.Phys.Lett. 102: 501–507 (1983)

    Article  CAS  Google Scholar 

  • J.R.Knutson, L.Davenport & L.Brand, Anisotropy decay associated fluorescence spectra and analysis of rotational heterogeneity. 1. Theory and applications. Biochemistry 25: 1805–1810 (1986)

    Article  PubMed  CAS  Google Scholar 

  • R.P.H.Kooyman, Y.K.Levine & B.W.van der Meer, Measurement of second and fourth rank order parameters by fluorescence polarization experiments in a lipid membrane system. Chem.Phys. 60: 317–326 (1981)

    Article  CAS  Google Scholar 

  • R.P.H.Kooyman, M.H.Vos & Y.K.Levine, Determination of orientational order parameters in oriented lipid membrane systems by angle-resolved fluorescence depolarization experiments. Chem.Phys. 81: 461–472 (1983)

    Article  CAS  Google Scholar 

  • D.Koppel, Fluorescence photobleaching recovery techniques for translational and slow rotational diffusion in solution and on cell surfaces. Biochem.Soc.Trans. 14: 842–845 (1986)

    PubMed  CAS  Google Scholar 

  • D.E.Koppel, D.Axelrod, J.Schlessinger, E.L.Elson & W.W.Webb, Dynamics of fluorescence marker concentration as a probe of mobility. Biophys.J. 16: 1315–1329 (1976)

    Article  PubMed  CAS  Google Scholar 

  • T.Kouyama, K.Kinosita,Jr. & A.Ikegami, Fluorescence energy transfer studies of transmembrane location of retinal in purple membrane. J.Mol.Biol. 165: 91–107 (1983)

    Article  PubMed  CAS  Google Scholar 

  • J.-G.Kuhry, P.Fonteneau, G.Duportail, C.Maechling & G.Laustriat, TMå-DPH: a suitable fluorescence polarization probe for specific plasma membrane fluidity studies in intact living cells. Cell Biophys. 5: 129–140 (1983)

    PubMed  CAS  Google Scholar 

  • J.R.Lakowicz & J.R.Knutson, Hindered depolarizing rotations of perylene in lipid bilayers. Detection by lifetime-resolved fluorescence anisotropy measurements. Biochemistry 19: 905–911 (1980)

    Article  PubMed  CAS  Google Scholar 

  • J.R.Lakowicz, F.G.Prendergast & D.Hogen, Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry 18: 508–519 (1979)

    Article  PubMed  CAS  Google Scholar 

  • W.Lesslauer, J.E.Cain & J.K.Blasie, X-ray diffraction studies of lecithin bimolecular leaflets with incorporated fluorescent probes. Proc.Natl.Acad.Sci. 69: 1499–1503 (1972)

    Article  PubMed  CAS  Google Scholar 

  • H.E.Lessing & A.von Jena, Separation of rotational diffusion and level kinetics in transient absorption spectroscopy. Chem.Phys.Lett. 42: 213–217 (1976)

    Article  CAS  Google Scholar 

  • H.E.Lessing, A.von Jena & M.Reichert, Orientational aspect of transient absorption in solution. Chem.Phys.Lett. 36: 517–522 (1975)

    Article  CAS  Google Scholar 

  • J.R.Lakowicz, H.Cherek, I.Gryczynski, N.Joshi & M.L.Johnson, Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Biophys.J. 51: 755–768 (1987)

    Article  PubMed  CAS  Google Scholar 

  • B.M.Liu, H.C.Cheung, K.-H.Chen & M.S.Habercom, Fluorescence decay kinetics of pyrene in membrane vesicles. Biophys.Chem. 12: 341–345 (1980)

    Article  PubMed  CAS  Google Scholar 

  • B.Mély-Goubert & M.H.Freedman, Lipid fluidity and protein monitoring using 1,6-diphenyl-1,3,5-hexatriene. Biochim.Biophys.Acta 601: 315–327 (1980)

    Article  PubMed  Google Scholar 

  • F.Mulders, H.van Langen, G.van Ginkel & Y.K.Levine, The static and dynamic behaviour of fluorescent probe molecules in lipid bilayers. Biochim.Biophys.Acta 859: 209–218 (1986)

    Article  CAS  Google Scholar 

  • C.P.Muller & G.R.F.Krueger, Modulation of membrane proteins by vertical phase separation and membrane lipid fluidity. Basis for a new approach to tumor immunotherapy. Anticancer Res. 6: 1181–1194 (1986)

    PubMed  CAS  Google Scholar 

  • K.R.Naqvi, Photoselection in uniaxial liquid crystals: The advantages of using saturating light pulses for the determination of orientational order. J.Chem.Phys. 74: 2658–2659 (1981)

    Article  Google Scholar 

  • P.S.O’Shea, Lateral diffusion: the archipelago effect. Trends Biochem. Sei.(TIBS) 9: 378 (1984)

    Article  Google Scholar 

  • P.S.O’Shea, 2-D diffusion and the structure of biological membranes. Trends Biochem.Sei.(TIBS) 10: 231 (1985)

    Article  Google Scholar 

  • J.C.Owicki & H.M.McConnell, Lateral diffusion in inhomogeneous membranes. Biophys.J. 30: 383–398 (1980)

    Article  PubMed  CAS  Google Scholar 

  • A.H.Parola, P.W.Robbins & E.R.Blout, Membrane dynamic alterations associated with viral transformation and reversion. Exp.Cell Res. 118: 205–214 (1979)

    Article  PubMed  CAS  Google Scholar 

  • R.Peters & R.J.Cherry, Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrúck equations. Proc.Natl.Acad.Sci.USA 79: 4317–4321 (1982)

    Article  PubMed  CAS  Google Scholar 

  • D.A.Pink, Constraints on protein lateral diffusion. Trends Biochem. Sei.(TIBS) 10: 230 (1985)

    Article  CAS  Google Scholar 

  • D.A.Pink, D.Chapman, D.J.Laidlaw & T.Wiedmer, Electron spin resonance and steady-state fluorescence polarization studies of lipid bilayers containing integral protein. Biochemistry 23: 4051–4058 (1984)

    Article  PubMed  CAS  Google Scholar 

  • F.Podo & J.K.Blasie, Nuclear magnetic resonance studies of lecithin bimolecular leaflets with incorporated fluorescent probes. Proc.Natl.Acad.Sci.USA 74: 1032–1036 (1977)

    Article  PubMed  CAS  Google Scholar 

  • H.Pottel, W.van der Meer & W.Herreman, Correlation between the order parameter and the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and an evaluation of membrane fluidity. Biochim.Biophys.Acta 730: 181–186 (1983)

    Article  CAS  Google Scholar 

  • H.Pottel, B.W.Van der Meer, W.Herreman & H.Depauw, A new approach to polarized fluorescence using phase and modulation fluorometry. Eur.Biophys.J. 15: 47–58 (1987)

    Article  CAS  Google Scholar 

  • C.J.Restall, R.E.Dale, E.K.Murray, C.W.Gilbert & D.Chapman,Rotational diffusion of calcium-dependent adenosine-5’-triphosphate in sarcoplasmic reticulum: a detailed study. Biochemistry 23: 6765–6776 (1984)

    Article  PubMed  CAS  Google Scholar 

  • J.Rogers, A.G.Lee & D.C.Wilton, The organisation of cholesterol and ergosterol in lipid bilayers based on studies using non-perturbing fluorescent sterol probes. Biochim.Biophys.Acta 552: 23–37 (1979)

    Article  PubMed  CAS  Google Scholar 

  • S.L.Rosenthal, A.H.Parola, E.R.Blout & R.L.Davidson, Membrane alterations associated with ’transformation’ by BUdR in BUdR dependent cells. Exp.Cell Res. 112: 419–429 (1978)

    Article  PubMed  CAS  Google Scholar 

  • P.G.Saffman & M.Delbrück, Brownian motion in biological membranes. Proc.Natl.Acad.Sci.USA 72: 3111–3113 (1975)

    Article  PubMed  CAS  Google Scholar 

  • F.Schroeder, Fluorescent probes as monitors of surface membrane fluidity gradients in murine fibroblasts. Eur.J.Biochem. 112: 293–307 (1980)

    Article  PubMed  CAS  Google Scholar 

  • F.Schroeder, Y.Barenholz, E.Gratton & T.E.Thompson, A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Biochemistry 26: 2441–2448 (1987)

    Article  PubMed  CAS  Google Scholar 

  • M.Shinitzky, Effective tumor immunization induced by cells of elevated membrane-lipid microviscosity. Proc.Natl.Acad.Sci.USA 76: 5313–5316 (1979)

    Article  PubMed  CAS  Google Scholar 

  • B.A.Smith & H.M.McConnell, Determination of molecular motion in membranes using periodic pattern photobleaching. Proc.Natl.Acad. Sei.USA 75: 2759–2763 (1978)

    Article  CAS  Google Scholar 

  • B.A.Smith, W.R.Clark & H.M.McConnell, Anisotropic molecular motion on cell surfaces. Proc.Natl.Acad.Sci.USA 76: 5641–5644 (1979)

    Article  PubMed  CAS  Google Scholar 

  • L.M.Smith, H.M.McConnell, B.A.Smith & J.W.Paree, Pattern photobleaching of fluorescent lipid vesicles using polarized laser light. Biophys.J. 33: 139–146 (1981)

    Article  PubMed  CAS  Google Scholar 

  • L.M.Smith, R.M.Weis & H.M.McConnell, Measurement of rotational motion in membranes using fluorescence recovery after photobleaching. Biophys.J. 36: 73–91 (1981)

    Article  PubMed  CAS  Google Scholar 

  • L.Stryer, D.D.Thomas & W.F.Carlsen, Fluorescence energy transfer measurements of distances in rhodopsin and the purple membrane protein. Meth.Enzymol. 81: 668–678 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Á.Szabo, Theory of polarized fluorescent emission in uniaxial liquid crystals. J.Chem.Phys. 72: 4620–4626 (1980)

    Article  CAS  Google Scholar 

  • A.Szabo, Theory of fluorescence depolarization in macromolecules and membranes. J.Chem.Phys. 81: 150–167 (1984)

    Article  CAS  Google Scholar 

  • D.D.Thomas, W.F.Carlsen & L.Stryer, Fluorescence energy transfer in the rapid diffusion limit. Proc.Natl.Acad.Sci.USA 75: 5746–5750 (1978)

    Article  PubMed  CAS  Google Scholar 

  • N.L.Thompson, H.M.McConnell & T.P.Burghardt, Order in supported phospholipid monolayers detected by the dichroism of fluorescence excited with polarized evanescent illumination. Biophys.J. 46: 739–747 (1984)

    Article  PubMed  CAS  Google Scholar 

  • M.J.M.van de Ven & Y.K.Levine, Angle-resolved fluorescence depolarization of macroscopically ordered bilayers of unsaturated lipids. Biochim.Biophys.Acta 777: 283–296 (1984)

    Article  Google Scholar 

  • B.W.van der Meer, R.P.H.Kooyman & Y.K.Levine, A theory of fluorescence depolarization in macroscopically ordered membrane systems. Chem.Phys. 66: 39–50 (1982)

    Article  Google Scholar 

  • B.W.Van der Meer, H.Pottel & W.Herreman, A new approach to polarized fluorescence using phase and modulation fluorometry. I. Theory with reference to hindered and anisotropic rotations. Eur.Biophys.J. 15: 35–45 (1987)

    Article  Google Scholar 

  • W.van der Meer, H.Pottel, W.Herreman, M.Ameloot, H.Hendrickx & H.Schroder, Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. Biophys.J. 46: 515–523 (1984)

    Article  PubMed  Google Scholar 

  • G.van Ginkel, L.J.Korstanje, H.van Langen & Y.K.Levine, The correlation between molecular orientational order and reorientational dynamics of probe molecules in lipid multibilayers. Faraday Discuss.Chem.Soc. 81: 49–61 (1986)

    Article  Google Scholar 

  • H.van Langen, Y.K.Levine, M.Ameloot & H.Pottel, Ambiguities in the interpretation of time-resolved fluorescence anisotropy measurements on lipid vesicle systems. Chem.Phys.Lett. 140: 394–400 (1987)

    Article  Google Scholar 

  • W.C.Vaz & D.Hallmann, Experimental evidence against the applicability of the Saffman-Delbrück model to the translational diffusion of lipids in phosphatidylcholine bilayer membranes. FEBS Lett. 152: 287–290 (1983)

    Article  CAS  Google Scholar 

  • W.R.Veatch & L.Stryer, Effect of cholesterol on the rotational mobility of diphenyl hexatriene in liposomes: A nanosecond fluorescence anisotropy study. J.Mol.Biol. 117: 1109–1113 (1977)

    Article  PubMed  CAS  Google Scholar 

  • M.Velez & D.Axelrod, Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes. Biophys.J. 53: 575–591 (1988)

    Article  PubMed  CAS  Google Scholar 

  • H.Vogel & F.Jahnig, Fast and slow orientational fluctuations in membranes. Proc.Natl.Acad.Sci.USA 82: 2029–2033 (1985)

    Article  PubMed  CAS  Google Scholar 

  • C.C.Wang & R.Pecora, Time-correlated functions for restricted rotational diffusion. J.Chem.Phys. 72: 5333–5340 (1980)

    Article  CAS  Google Scholar 

  • W.A.Wegener, Fluorescence recovery spectroscopy as a probe of slow rotational motions. ,Biophys.J. 46: 795–803 (1984)

    Article  PubMed  CAS  Google Scholar 

  • W.A.Wegener & R.Rigler, Separation of translational and rotational contributions in solution studies using fluorescence photo bleaching recovery. Biophys.J. 46: 787–793 (1984)

    Article  PubMed  CAS  Google Scholar 

  • P.K.Wolber & B.S.Hudson, Bilayer acyl chain dynamics and lipidprotein interaction. The effect of M13 bacteriophage coat protein on the decay of the fluorescence anisotropy of parinaric acid. Biophys.J. 37: 253–262 (1982)

    Article  PubMed  CAS  Google Scholar 

  • T.M.Yoshida & B.G.Barisas, Protein rotational motion in solution measured by polarized fluorescence depletion. Biophys.J. 50: 41–53 (1986)

    Article  PubMed  CAS  Google Scholar 

  • K.A.Zachariasse, G.Duveneck & W.Kühnle, Double-exponential decay in intramolecular excimer formation: 1,3-di(2-pyrenyl)propane. Chem.Phys.Lett. 113: 337–343 (1985)

    Article  CAS  Google Scholar 

  • K.A.Zachariasse, R.Busse, G.Duveneck & W.Kühnle, Intramolecular monomer and excimer fluorescence with dipyrenylpropanes: double-exponential versus triple-exponential decays. J.Photochem. 28: 237–253 (1985)

    Article  CAS  Google Scholar 

  • C.Zannoni, A theory of time-dependent fluorescence in liquid crystals. Mol.Phys. 38: 1813–1827 (1979).

    Article  CAS  Google Scholar 

  • C.Zannoni, A theory of fluorescence depolarization in membranes. Mol.Phys. 42: 1303–1320 (1981)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dale, R.E. (1988). Some Aspects of Excited-State Probe Emission Spectroscopy for Structure and Dynamics of Model and Biological Membranes. In: Samori’, B., Thulstrup, E.W. (eds) Polarized Spectroscopy of Ordered Systems. NATO ASI Series, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3039-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3039-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7866-5

  • Online ISBN: 978-94-009-3039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics