Skip to main content

Turbulence Kinetic Energy, Stability and Scaling

  • Chapter
Book cover An Introduction to Boundary Layer Meteorology

Part of the book series: Atmospheric Sciences Library ((ATSL,volume 13))

Abstract

Turbulence kinetic energy (TKE) is one of the most important variables in micrometeorology, because it is a measure of the intensity of turbulence. It is directly related to the momentum, heat, and moisture transport through the boundary layer. Turbulence kinetic energy is also sometimes used as a starting point for approximations of turbulent diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • André, J.-C., G. De Moor, P. Lacarrère, G. Therry, and R. du Vachat, 1978: Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. Atmos. Sci., 35, 1861–1883.

    Article  Google Scholar 

  • Businger, J.A., J.C. Wyngaard, Y. Izumi and E.F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.

    Article  Google Scholar 

  • Caughey, S.J., J.C. Wyngaard and J.C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36, 1041–1052.

    Google Scholar 

  • Chou, S.-H., D. Atlas, and E.-N. Yeh, 1986: Turbulence in a convective marine atmospheric boundary layer. J. Atmos. Sci., 43, 547–564.

    Article  Google Scholar 

  • Deardorff, J.W., 1974: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7, 199–226.

    Google Scholar 

  • Gal-Chen, T. and R.A. Kropfli, 1984: Buoyancy and pressure perturbations derived from dual-Doppler radar observations of the planetary boundary layer: applications for matching models with observations. J. Atmos. Sci., 41, 3007–3020.

    Article  Google Scholar 

  • Hechtel, L.M., 1988: The effects of nonhomogeneous surface heat and moisture fluxes on the convective boundary layer. Preprints of the Am. Meteor. Soc. 8th Symposium on Turbulence and Diffusion in San Diego, April 1988. 4pp.

    Google Scholar 

  • Holtslag, A.A.M. and F.T.M. Nieuwstadt, 1986: Scaling the atmospheric boundary layer. Bound.-Layer Meteor., 36, 201–209.

    Article  Google Scholar 

  • Kitchen, M., J.R. Leighton and S.J. Caughey, 1983: Three case studies of shallow convection using a tethered balloon. Bound.-Layer Meteor., 27, 281–308.

    Article  Google Scholar 

  • Lee, D.R., R. B. Stull, and W.S. Irvine, 1979: Clear Air Turbulence Forecasting Techniques. AFGWC/TN-79/001. Air Force Global Weather Central, Offutt AFB, NE 68113. 73pp.

    Google Scholar 

  • Lenschow, D.H., 1974: Model of the height variation of the turbulence kinetic energy budget in the unstable planetary boundary layer.J. Atmos. Sci., 31, 465–474.

    Article  Google Scholar 

  • Lenschow, D.H., J.C. Wyngaard and W.T Pennell, 1980: Mean field and second moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 1313–1326.

    Article  Google Scholar 

  • Louis, J.F., A. Weill and D. Vidal-Madjar, 1983: Dissipation length in stable layers. Bound.-Layer Meteor., 25, 229–243.

    Article  Google Scholar 

  • Mahrt, L., 1981: Modelling the depth of the stable boundary layer. Bound.-Layer Meteor., 21, 3–19.

    Article  Google Scholar 

  • McBean, G.A. and J.A. Elliott, 1975: The vertical transports of kinetic energy by turbulence and pressure in the boundary layer. J Atmos. Sci., 32, 753–766.

    Article  Google Scholar 

  • Nicholls, S., M.A. Lone and G. Sommeria, 1982: The simulation of a fair weather marine boundary layer in GATE using a three dimensional model. Quart. J. Roy. Meteor. Soc., 108, 167–190.

    Google Scholar 

  • Nicholls, S. and C.J. Readings, 1979: Aircraft observations of the structure of the lower boundary layer over the sea. Quart. J. Roy. Meteor. Soc. 105, 785–802.

    Article  Google Scholar 

  • Noonkester, V.R., 1974: Convective activity observed by FM-CW radar. Naval Electronics Lab. Center, NELQTR 1919. San Diego, CA 92152. 70pp.

    Google Scholar 

  • Pennell, W.T. and M.A. Lone, 1974: An experimental study of turbulence structure in the fair-weather trade wind boundary layer. J. Atmos. Sci., 31, 1308–1323.

    Article  Google Scholar 

  • Stage, S.A. and J.A. Businger, 1981: A model for entrainment into a cloud-topped marine boundary layer. Part I. Model description and application to a cold air outbreak episode. J. Atmos. Sci. 38, 2213–2229.

    Article  Google Scholar 

  • Therry, G. and P. Lacarrètre, 1983: Improving the eddy kinetic energy model for planetary boundary layer description. Bound.-Layer Meteor., 25, 63–88.

    Article  Google Scholar 

  • Thorpe, S.A., 1969: Experiments on the stability of stratified shear flows. Radio Science, 4, 1327–1331.

    Article  Google Scholar 

  • Thorpe, S.A., 1973: CAT in the lab. Weather, 28, 471–475.

    Google Scholar 

  • Wilczak, J.M. and J.A. Businger, 1984: Large-scale eddies in the unstably stratified atmospheric surface layer. Part II. Turbulent pressure fluctuations and the budgets of heat flux, stress and turbulent kinetic energy. J. Atmos. Sri., 41, 3551–3567.

    Article  Google Scholar 

  • Woods, J.D., 1969: On Richardson’s number as a criterion for laminar-turbulent-laminar transition in the ocean and atmosphere.Radio Science 4,1289–1298.

    Article  Google Scholar 

  • Wyngaard, J.C., 1973: On surface layer turbulence. Workshop on Micrometeorology, D.A. Haugen (Ed.), Amer. Meteor. Soc., Boston. 101–149.

    Google Scholar 

  • Yamada, T. and G. Mellor, 1975: A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci., 32, 2309–2329.

    Article  Google Scholar 

  • Zhou, M.Y., D.H. Lenschow, B.B. Stankov, J.C. Kaimal, and J.E. Gaynor, 1985: Wave and turbulence structure in a shallow baroclinic convective boundary layer and overlying inversion. J. Atmos. Sci., 42, 47–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stull, R.B. (1988). Turbulence Kinetic Energy, Stability and Scaling. In: Stull, R.B. (eds) An Introduction to Boundary Layer Meteorology. Atmospheric Sciences Library, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3027-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3027-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2769-5

  • Online ISBN: 978-94-009-3027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics