Skip to main content

Convective Mixed Layer

  • Chapter

Part of the book series: Atmospheric Sciences Library ((ATSL,volume 13))

Abstract

Buoyancy is the dominant mechanism driving turbulence in a convective boundary layer. Such turbulence is not completely random, but is often organized into identifiable structures such as thermals and plumes (Young, 1988). Entertainment happens at a variety of scales: lateral entertainment by small eddies into the sides of thermals, and vertical entertainment on the thermal scale into the whole mixed layer. In this chapter we examine the structure and evolution of the convective boundary layer, and study the forcings acting on it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agee, E.M., 1984: Observations from space and thermal convection: a historical perspective. Bull. Am. Meteor. Soc., 65, 938–949.

    Article  Google Scholar 

  • Agee, E.M., T.S. Chen and K.E. Dowell, 1973: A review of mesoscale cellular convection. J. Appi. Meteor., 13, 46–53.

    Article  Google Scholar 

  • André, J.-C., J.-P. Goutorbe, and A. Perrier, 1986: HAPEX-MOBILHY, a hydrologic atmospheric pilot experiment for the study of water budget and evaporation flux at the climatic scale. Bull. Am. Meteor. Soc., 67, 138–144.

    Article  Google Scholar 

  • Arritt, R.W., 1987: Effect of water surface temperature on lake breezes and thermal internal boundary layers. Bound.-Layer Meteor., 40, 101–125.

    Article  Google Scholar 

  • Atlas, D., B. Walter, S.-H. Chou and P.J. Sheu, 1986: The structure of the unstable marine boundary layer viewed by lidar and aircraft observations. J. Atmos. Sci., 43, 1301–1318.

    Article  Google Scholar 

  • Bader, D.C., T.B. Mee and G.J. Tripoli, 1987: Mesoscale boundary layer evolution over complex terrain. Part 1. Numerical simulation of the diurnal cycle. J. Atmos. Sci., 44, 2823–2838.

    Article  Google Scholar 

  • Ball, F.K., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86, 483–494.

    Article  Google Scholar 

  • Bénech, B., J. Noilhan, A. Druilhet, J.M. Brustet and C. Charpentier, 1986: Experimental study of an artificial thermal plume in the boundary layer. Part 1. Flow characteristics near the heat source. J. Clim. Appi. Meteor., 25, 418–437.

    Article  Google Scholar 

  • Boers, R. and E.W. Eloranta, 1986: Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer. Bound.-Layer Meteor., 34, 357–375.

    Article  Google Scholar 

  • Boers, R., E.W. Eloranta and R.L. Coulter, 1984: Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate. J. Clim. Appi. Meteor., 23, 247–266.

    Article  Google Scholar 

  • Brown, R.A., 1970: A secondary flow model for the planetary boundary layer. J. Atmos. Sci., 27, 742–757.

    Article  Google Scholar 

  • Brutsaert, W., 1987: Nearly steady convection and the boundary layer budgets of water vapor and sensible heat. Bound.-Layer Meteor., 39, 283–300.

    Article  Google Scholar 

  • Carruthers, DJ. and C.-H. Moeng, 1987: Waves in the overlying inversion of the convective boundary layer. J. Atmos. Sci., 44, 1801–1808.

    Article  Google Scholar 

  • Chang, H.-R. and H.N. Shirer, 1984: Transitions in shallow convection: an explanation for lateral cell expansion. J. Atmos. Sci., 41, 2334–2346.

    Article  Google Scholar 

  • Clark, T.L., T. Hauf and J.P. Kuettner, 1986: Convectively forced internal gravity waves: results from two-dimensional numerical experiments. Quart. J. Roy. Meteor. Soc., 112, 899–925.

    Article  Google Scholar 

  • Crum, T.D. and R.B. Stull, 1987: Field measurements of the amount of surface layer air versus height in the entrainment zone. J. Atmos. Sci., 44, 2743–2753.

    Article  Google Scholar 

  • Crum, T.D., R.B. Stull and E.W. Eloranta, 1987: Coincident lidar and aircraft observations of entrainment into thermals and mixed layers. J. Clim. Appi. Meteor., 26, 774–788.

    Article  Google Scholar 

  • Deardorff, J.W., 1969: Numerical study of heat transport by internal gravity waves above a growing unstable layer. Phys. Fluids, Suppl. II, 12, 184–194.

    Google Scholar 

  • Deardorff, J.W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91–115.

    Article  Google Scholar 

  • Deardorff, J.W., 1974: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound-Layer. Meteor., 7, 199–226.

    Google Scholar 

  • Deardorff, J.W., 1979: Prediction of convective mixed-layer entrainment for realistic capping inversion structure. J. Atmos. Sci., 36, 424–436.

    Article  Google Scholar 

  • Deardorff, J.W. and G.E. Willis, 1985: Further results from a laboratory model of the convective planetary boundary layer. Bound.-Layer Meteor., 32, 205–236.

    Article  Google Scholar 

  • Deardorff, J.W., G.E. Willis and D.K. Lilly, 1969: Laboratory investigation of non- steady penetrative convection. J. Fluid Mech., 35, 7–31.

    Article  Google Scholar 

  • Deardorff, J.W., G.E. Willis and B.H. Stockton, 1980: Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech., 100, Part 1, 41–64.

    Article  Google Scholar 

  • Doviak, R.J. and M. Berger, 1980: Turbulence and waves in the optically clear planetary boundary layer resolved by dual-Doppler radar. Radio Science, 15, 297–317.

    Article  Google Scholar 

  • Driedonks, A.G.M. and H. Tennekes, 1984: Entrainment effects in the well-mixed atmospheric boundary layer. Bound.-Layer Meteor., 30, 75–105.

    Article  Google Scholar 

  • Fairall, C.W., 1987: A top-down and bottom-up diffusion model of 2 and cq2 in the entraining convective boundary layer. J. Atmos. Sci., 44, 1009–1017.

    Article  Google Scholar 

  • Ferrare, R.A., 1984: Lidar observations of organized convection within the atmospheric mixed layer. M.S. Thesis. Dept. of Meteorology, Univ. of Wisconsin-Madison. 204pp.

    Google Scholar 

  • Fiedler, B.H., 1984: The mesoscale stability of entrainment into cloud-topped mixed layers. J. Atmos. Sci., 41, 92–101.

    Article  Google Scholar 

  • Fitzjarrald, D.E., 1973: A field investigation of dust devils. J. Appl. Meteor., 12, 808–813.

    Article  Google Scholar 

  • Fritz, R.B. and T.-I. Wang, 1979: Chapt. 9. Optical systems measuring surface-level convergence during PHOENIX, Project PHOENIX, Report No. L (Hooke, Ed.), 57–73. Available from NOAA.ERL, Boulder, CO 80303.

    Google Scholar 

  • Godowitch, J.M., 1986: Characteristics of vertical turbulence velocity in the urban convective boundary layer. Bound.-Layer Meteor., 35, 387–407.

    Article  Google Scholar 

  • Greenhut, G.K. and S.J.S. Khalsa, 1982: Updraft and downdraft events in the atmospheric boundary layer over the equatorial Pacific Ocean. J. Atmos. Sci., 39, 1803–1818.

    Article  Google Scholar 

  • Greenhut, G.K. and S.J.S. Khalsa, 1987: Convective elements in the marine atmospheric boundary layer. Part 1: Conditional sampling statistics. J. Clim. Appl. Meteor., 26, 813–822.

    Article  Google Scholar 

  • Haines, D.A., 1982: Horizontal roll vortices and crown fires. J. Clim. Appl. Meteor 21, 751–763.

    Article  Google Scholar 

  • Hanna, S.R., 1987: An empirical formula for the height of the coastal internal boundary layer. Bound.-Layer Meteor., 40, 205–207.

    Article  Google Scholar 

  • Hooper, W.P., 1982: The Diurnal Evolution of the Planetary Boundary Layer: Lidar Observations above a Flat Homogeneous Surface. M.S. Thesis, Univ. of Wisconsin — Madison. 160pp.

    Google Scholar 

  • Hooper, W.P. and E.W. Eloranta, 1986: Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon. J. Clim. Appl. Meteor., 25, 990–1001.

    Article  Google Scholar 

  • Hsu, S.A., 1986: A note on estimating the height of the convective internal boundary layer near shore. Bound.-Layer Meteor., 35, 311–316.

    Article  Google Scholar 

  • Idso, S.B., 1975: Tornado-like dust devils. Weather, 30, 115–117.

    Google Scholar 

  • Idso, S.B., 1975: Arizona weather watchers: past and present. Weatherwise, 28, 56–60.

    Article  Google Scholar 

  • Idso, S.B., 1975: Whirlwinds, density currents, and topographic disturbances: a meteorological melange of intriguing interactions. Weatherwise, 28, 61–65.

    Article  Google Scholar 

  • Kaimal, J.C. and J.A. Businger, 1970: Case studies of a convective plume and a dust devil. J. Appl. Meteor., 9, 612–620.

    Article  Google Scholar 

  • Kaimal, J.C, W.L. Eberhard, W.R. Moniger, J.E. Gaynor, S.W. Troxel, T. Uttal, G.A. Briggs, and G.E. Start, 1986: Project Condors, Convective Diffusion observed by remote sensors. NOAA/ERL, Boulder, CO 80303.

    Google Scholar 

  • Khalsa, S.J.S. and G.K. Greenhut, 1985: Conditional sampling of updrafts and downdrafts in the marine atmospheric boundary layer. J. Atmos. Sci., 42, 2550–2562.

    Article  Google Scholar 

  • Khalsa, S.J.S. and G.K. Greenhut, 1987: Convective elements in the marine atmospheric boundary layer. Part 2: Entrainment at the capping inversion. J. Clim. Appl. Meteor., 26, 824–836.

    Article  Google Scholar 

  • Kraus, E.B., 1972: Atmosphere-Ocean Interaction. Cambridge Univ. Press., Oxford. 275pp.

    Google Scholar 

  • Kraus, E.B. and L.D. Leslie, 1982: The interactive evolution of the oceanic and atmospheric boundary layers in the source regions of the trades. J. Atmos. Sci., 39, 2760–2772.

    Article  Google Scholar 

  • Kropfli, R.A., 1979: Chapt. 3. PHOENIX multiple Doppler radar operations. Project PHOENIX - Report No. 1. (Hooke, Ed.), 33–56. Available from NOAA/ERL, Boulder, CO 80303.

    Google Scholar 

  • Kuettner, J.P., P.A. Hildebrand and T.L. Clark, 1987: Convection waves: observations of gravity wave systems over convectively active boundary layers. Quart. J. Roy. Meteor. Soc., 113, 445–468.

    Article  Google Scholar 

  • Lamb, R.G., 1978: A numerical simulation of dispersion from an elevated point source in the convective planetary boundary layer. Atmos. Environ., 12, 1297–1304.

    Article  Google Scholar 

  • Lone, M.A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 1077–1091.

    Article  Google Scholar 

  • Lone, M.A., 1976: Modulation of turbulence energy by longitudinal rolls in an unstable planetary boundary layer. J. Atmos. Sci., 33, 1308–1320.

    Article  Google Scholar 

  • Lenschow, D.H., 1973: Two examples of planetary boundary layer modification over the great lakes. J. Atmos. Sci., 30, 568–581.

    Article  Google Scholar 

  • Lenschow, D.H. and E.M. Agee, 1986: Preliminary results from the Air Mass Transformation Experiment (AMTEX). Bull. Am. Meteor. Soc., 57, 1346–1355.

    Google Scholar 

  • Lilly, D.K., 1968: Models of cloud-topped mixed layers under a strong inversion. J. Atmos. Sci., 30, 1092–1099.

    Google Scholar 

  • Lyons, W.A., 1975: Turbulent diffusion and pollutant transport in shoreline environments. Lectures on Air Pollution and Environmental Impact Analysis, D.A. Haugen (Ed.), Am. Meteor. Soc. 136–208.

    Google Scholar 

  • Mahrt, L., 1979: Penetrative convection at the top of a growing boundary layer. Quart. J. Roy. Meteor. Soc., 105, 469–485.

    Article  Google Scholar 

  • Mahrt, L. and J.-C. André, 1983: On the stratification of turbulent mixed layers. J. Geophys. Res., 88, 2662–2666.

    Article  Google Scholar 

  • Mahrt, L. and J. Paumier, 1984: Heat transport in the atmospheric boundary layer. J. Atmos. Sci., 41, 3061–3075.

    Article  Google Scholar 

  • Mahrt, L. and J. Paumier, 1985: Simple formulation of heat flux in the unstable atmospheric boundary layer. Bound.-Layer Meteor., 33, 61–76.

    Article  Google Scholar 

  • Mason, P.J. and R.I. Sykes, 1980: A 2-D numerical study of horizontal roll vortices in the neutral atmospheric boundary layer. Quart. J. Roy. Meteor, Soc., 106, 351–336.

    Article  Google Scholar 

  • Mason, P.J. and R.I. Sykes, 1982: A 2-D numerical study of horizontal roll vortices in an inversion-capped planetary boundary layer. Quart. J. Roy. Meteor. Soc., 108, 801–823.

    Article  Google Scholar 

  • Moeng, C.-H. and J.C. Wyngaard, 1984: Statistics of conservative scalars in the convective boundary layer. J. Atmos. Sci., 41, 3161–3169.

    Article  Google Scholar 

  • News and Notes, 1976: Dust devil wind velocities. Bull. Am. Meteor. Soc., 57, 600.

    Google Scholar 

  • Nieuwstadt, F.T.M. and R.A. Brost, 1986: The decay of convective turbulence. J. Atmos. Sci., 43, 532–546.

    Article  Google Scholar 

  • Nieuwstadt, F.T.M. and H. van Dop, 1982: Atmospheric Turbulence and Air Pollution Modelling. Reidei Pubi. Co., Dordrecht. 358pp.

    Google Scholar 

  • Noilhan, J. and B. Bénech, 1986: Experimental study of an artificial thermal plume in the boundary layer. Part 3: Dynamic structure within the plume. J. Clim. Appl. Meteor., 25, 458–467.

    Article  Google Scholar 

  • Noilhan, J., B. Bénech, G. Letrenne, A. Druilhet and A. Saab, 1986: Experimental study of an artificial thermal plume in the boundary layer. Part 2: Some aspects of the plume thermodynamical structure. J. Clim. Appl. Meteor., 25, 439–457.

    Article  Google Scholar 

  • Rabin, R.M., R.J. Doviak and A. Sundara-Rajan, 1982: Doppler radar observations of momentum flux in a cloudless convective layer with rolls. J. Atmos. Sci., 39, 851–863.

    Article  Google Scholar 

  • Randall, D.A., 1984: Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers. J. Atmos. Sci., 41, 402–413.

    Article  Google Scholar 

  • Ray, D., 1986: Variable eddy diffusivities and atmospheric cellular convection. Bound.- Layer Meteor., 36, 117–131.

    Article  Google Scholar 

  • Rayment, R. and C.J. Readings, 1974: A case study of the structure and energetics of an inversion. Quart. J. Roy. Meteor. Soc., 100, 221–223.

    Article  Google Scholar 

  • Reichmann, H., 1975: Cross-country Soaring (Streckensegelflug). Thompson Publications. P.O. Box 1175, Pacific Palisades, CA 90272. 150pp.

    Google Scholar 

  • Reinking, R.F., R.J. Doviak and R.O. Gilmer, 1981: Clear-air roll vortices and turbulent motions as detected with an airborne gust probe and dual-Doppler radar. J. Appl. Meteor., 20, 678–685.

    Article  Google Scholar 

  • Rosmond, T.E., 1973: Mesoscale cellular convection. J. Atmos. Sci., 30, 1392–1409.

    Article  Google Scholar 

  • Rothermal, J. and E.M. Agee, 1980: Aircraft investigation of mesoscale cellular convection during AMTEX 75. J. Atmos. Sci., 37, 1027–1040.

    Article  Google Scholar 

  • Rothermel, J. and E.M. Agee, 1986: A numerical study of atmospheric convective scaling. 7. Atmos. Sci., 43, 1185–1197.

    Article  Google Scholar 

  • Schols, J.L.J., 1984: The detection and measurement of turbulent structures in the atmospheric surface layer. Bound.-Layer Meteor., 29, 39–58.

    Article  Google Scholar 

  • Schols, J.L.J., A.E. Jansen and J.G. Krom, 1985: Characteristics of turbulent structures in the unstable atmospheric surface layer. Bound.-Layer Meteor., 33, 173–196.

    Article  Google Scholar 

  • Schols, J.L.J, and L. Wartena, 1986: A dynamical description of turbulent structure in the near neutral atmospheric surface layer: the role of static pressure fluctuations. Bound.-Layer Meteor., 34, 1–15.

    Article  Google Scholar 

  • Scorer, R.S., 1957: Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech. 2, 583–594.

    Article  Google Scholar 

  • Sheu, P.J. and E.M. Agee, 1977: Kinematic analysis and air-sea heat flux associated with mesoscale cellular convection during AMTEX 75. J. Atmos. Sci., 34, 793–801.

    Article  Google Scholar 

  • Sinclair, P.C., V.H. Leverson and R.F. Abbey, Jr., 1977: The vortex structure of dust devils, water spouts, and tornadoes. 10th AMS Conference on Severe Local Storms, Oct 18–21, Omaha, NE. Amer. Meteor. Soc., Boston. 533pp.

    Google Scholar 

  • Smolarkiewicz, P.K. and T.L. Clark, 1985: Numerical simulation of the evolution of a three-dimensional field of cumulus clouds. Part 1: Model description, comparison with observations and sensitivity studies. J. Atmos. Sci., 42, 502–522.

    Article  Google Scholar 

  • Stage, S.A. and J. A. Businger, 1981: A model for entrainment into a cloud-topped marine boundary layer. Parts 1 & 2. J. Atmos. Sci., 38, 2213–2242.

    Article  Google Scholar 

  • Stull, R.B., 1973: Inversion rise model based on penetrative convection. J. Atmos. Sci., 30, 1092–1099.

    Article  Google Scholar 

  • Stull, R.B., 1976a: The energetics of entrainment across a density interface. J. Atmos. Sci., 33, 1260–1267.

    Google Scholar 

  • Stull, R.B., 1976b: Mixed layer depth model based on turbulent energetics. J. Atmos. Sci., 33, 1268–1278.

    Article  Google Scholar 

  • Stull, R.B., 1976c: Internal gravity waves generated by penetrative convection. J. Atmos. Sci., 33, 1279–1286.

    Article  Google Scholar 

  • Stull, R.B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Clim. Appl. Meteor., 24, 49–56.

    Article  Google Scholar 

  • Stull, R.B., 1988: Pollutant dispersion and mixed-layer modeling using asymmetric transilient matrices. 8th AMS Symposium on Turbulence and Diffusion. San Diego, 25–29 April 1988. Amer. Meteor. Soc., Boston. 4pp.

    Google Scholar 

  • Stull, R.B. and A.G.M. Driedonks, 1987: Applications of the transilient turbulence parameterization to atmospheric boundary-layer simulations. Bound.-Layer Meteor., 40, 209–239.

    Article  Google Scholar 

  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558–581.

    Article  Google Scholar 

  • Vachalek, R.E., R.B. Stull, and E.W. Eloranta, 1988: Mean vertical velocity and divergence measurements in the boundary layer. (Submitted to J. Appl. Meteor.)

    Google Scholar 

  • Venkatram, A., 1977: A model for internal boundary layer development. Bound.-Layer Meteor., 11, 419–437.

    Article  Google Scholar 

  • Weinstock, J., 1987: The turbulence field generated by a linear gravity wave. J. Atmos.Sri., 44, 410–420.

    Article  Google Scholar 

  • Wilczak, J.M. and J.A. Businger, 1983: Thermally indirect motions in the convective atmospheric boundary layer. J. Atmos. Sci., 40, 343–358.

    Article  Google Scholar 

  • Wilczak, J.M. and J.E. Tillman, 1980: The three-dimensional structure of convection in the atmospheric surface layer. J. Atmos. Sci., 37, 2424–2443.

    Article  Google Scholar 

  • Wilde, N.P., R.B. Stull, and E.W. Eloranta, 1985: The LCL zone and cumulus onset. J. Clim. Appl. Meteor., 24, 640–657.

    Article  Google Scholar 

  • Willis, G.E. and J.W. Deardorff, 1976: A laboratory model of diffusion into the convective planetary boundary layer. Quart. J. Roy. Meteor. Soc., 102, 427–445.

    Article  Google Scholar 

  • Willis, G.E. and J.W. Deardorff, 1978: A laboratory study of dispersion from an elevated source within a modeled convective planetary boundary layer. Atmos. Environ., 12, 1305–1311.

    Article  Google Scholar 

  • Willis, G.E. and J.W. Deardorff, 1981: A laboratory study of dispersion from a source in the middle of the convectively mixed layer. Atmos. Environ., 15, 109–117.

    Article  Google Scholar 

  • Wyngaard, J.C., 1987: A physical mechanism for the asymmetry in top-down and bottom-up diffusion. J. Atmos. Sci., 44, 1083–1087.

    Article  Google Scholar 

  • Wyngaard, J.C. and R.A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102–112.

    Article  Google Scholar 

  • Young, G.S., 1988a&b: Turbulence structure of the convective boundary layer. Parts I & II. J. Atmos. Sci., 44, (in press).

    Google Scholar 

  • Young, G.S., 1988c: Convection in the atmospheric boundary layer. Earth Science Reviews (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stull, R.B. (1988). Convective Mixed Layer. In: Stull, R.B. (eds) An Introduction to Boundary Layer Meteorology. Atmospheric Sciences Library, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3027-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3027-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2769-5

  • Online ISBN: 978-94-009-3027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics