Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 239))

Abstract

Upwelling due to vortex contraction on the anticyclonic flank of transient mesoscale jets is fast enough and sustained for long enough to effect substantial local increase in primary production. Dynamical constraints limit upwelling to patches with horizontal dimensions of about ten kilometres, similar to those of primary production “hot spots” observed in satellite images. In situ surveys suggest that the distribution of these mesoscale patches of high plankton concentration strongly influences the large scale variation of primary production. The latter can be estimated from the statistics of mesoscale upwelling events. Given the new understanding of mesoscale dynamics, those statistics can be computed using geostrophic turbulence theory, provided the large scale distribution of isopycnic potential vorticity Q is known. (The relevant properties of Q are summarized in an appendix.) The seasonal climatology of Q in the euphotic zone is described, and it is shown how inter-annual variations can be predicted by means of a model of ocean circulation and mixed layer dynamics. A multi-year programme of experiments in the North Atlantic has been undertaken to test the theory. This has involved a series of high resolution sections extending 2,000 km between the Azores and Greenland, and synoptic mapping of mesoscale structure at the inter-gyre front. The phase relationships between distributions of Q, temperature, velocity and concentrations of particles and chlorophyll in the maps are consistent with the theory. The distributions of Q, upwelling and chlorophyll in the sections supports the hypothesis that large scale variation of primary production is best viewed in terms of the statistics of mesoscale events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer, J., J. Fischer, H. Leach, and J.D. Woods: 1985, ‘Sea Rover data report 1 -North Atlantic summer 1981’, Berichte No. 143, Inst. f. Meereskunde, Kiel.

    Google Scholar 

  • Bauer, J., and J.D. Woods: 1984, ‘Isopycnic atlas of the North Atlantic Ocean’, Berichte No. 132, Inst. f. Meereskunde, Kiel.

    Google Scholar 

  • Batchelor, G.K.: 1969, ‘Computation of the energy spectrum in homogeneous two-dimensional turbulence’, Physics of Fluids 12(Suppl.II), 233–239.

    ADS  Google Scholar 

  • Bleck, R., R. Onken and J.D. Woods: 1988, ‘A two-dimensional model of mesoscale frontogenesis in the ocean’, Q. J. roy. meteor. Soc. (in press).

    Google Scholar 

  • Brewer, P.G., W.W. Bruland, R.W. Eppley, and J.J. McCarthy: 1986, ‘The Global Ocean Flux Experiment (GOFS)’, EOS 67(44), 827–832, 835-837.

    Google Scholar 

  • Cox, M.: 1985, ‘An eddy resolving numerical model of the ventilated thermocline’, J. Physical Oceanography 15, 1312–24.

    Article  ADS  Google Scholar 

  • Dantzler, H.L.: 1977, ‘Geographic variations in intensity of the North Atlantic and North Pacific oceanic eddy fields’, Deep-Sea Res. 7, 512–519.

    Google Scholar 

  • DeFant, A.: 1929, ‘Stable stratification in oceans and associated current systems’, Veroeff. Inst. Meer. Univ. Berlin, Nerfolge A, 19.

    Google Scholar 

  • Denman, K.L. and T. Platt: 1975, ‘The variance spectrum of phytoplankton in a turbulent ocean’, J. Mar. Res. 34, 593–601.

    Google Scholar 

  • Denman, K.L. and T.M. Powell: 1984, ‘Effects of physical processes on plankonic ecosystems in the ocean’, Oceanogr. Mar. Biol. Ann. Rev. 22, 125–168.

    Google Scholar 

  • Esaias, W., G.C. Feldman, C.R. McClain, and J.A. Elrod: 1986, ‘Monthly satellite-derived phytoplankton pigment distribution for the North Atlantic ocean basin’, EOS 67, 835–7.

    ADS  Google Scholar 

  • Fasham, M.J.R., T. Platt, B. Irwin, and K. Jones: 1985, ‘Factors affecting the spatial pattern of the deep chlorophyll maximum in the region of the Azores front’, Prog. Oceanog. 14, 129–165.

    Article  Google Scholar 

  • Fasham, M.J.R. and P.R. Pugh: 1976, ‘Observations of the horizontal coherence of chlorophyll a and temperature’, Deep-Sea Res. 23, 527–538.

    Google Scholar 

  • Fischer, J., H. Leach, and J.D. Woods: 1988, ‘A synoptic map of isopycnic potential vorticity in the seasonal thermocline at the North Atlantic Polar Front’, (in preparation).

    Google Scholar 

  • Gill, A.E.: 1982, Atmosphere-Ocean Dynamics ,Academic Press, London.

    Google Scholar 

  • Gower, J.F.R., K.L. Denman, and R.J. Holyer: 1980, ‘Phytoplankton patchiness indicates the fluctuations spectrum of mesoscale oceanic structure’, Nature 288, 157–159.

    Article  ADS  Google Scholar 

  • Gregg, M.C., H. Peters, J.C. Wesson, N.S. Oaker, and T.J. Shay: 1986, ‘Intensive measurements of turbulence and shear in the equatorial undercurrent’, Nature 318, 140–144.

    Article  ADS  Google Scholar 

  • Horch, A.: 1987, ‘Doctorate Thesis’, Kiel Univ.

    Google Scholar 

  • Hoskins, Mclntyre and Robertson: 1985, ‘On the use and significance of isentropic potential vorticity maps’, Q. J. roy. Meteor. Soc. 111, 877– 946.

    Article  ADS  Google Scholar 

  • Jerlov, N.G.: 1976, Marine Optics ,Elsevier, Amsterdam 231 pp.

    Google Scholar 

  • Leach, H., P.J. Minnett, and J.D. Woods: 1985, ‘The GATE Lagrangian Batfish experiment’, Deep-Sea Res. 32, 575–597.

    Article  Google Scholar 

  • Le Fevre, J.: 1986, ‘Aspects of the biology of frontal systems’, Adv. Mar. Biol. 23, 163–299.

    Google Scholar 

  • MacVean, M.K. and J.D. Woods: 1980, ‘Redistribution of scalars during upper ocean frontogenesis: a numerical model’, Q. J. roy. meteor. Soc. 106, 293–311.

    Article  ADS  Google Scholar 

  • Okubo, A.: 1971, ‘Oceanic diffusion diagrams’, Deep-Sea Res. 18, 789–802.

    Google Scholar 

  • Pingree, R.D., P.R. Pugh, P.M. Holligan, and G.R. Forster: 1975, ‘Summer phytoplankton blooms and red tides along tidal fronts in the approaches to the English Channel’, Nature 258, 672–677.

    Article  ADS  Google Scholar 

  • Rhines, P.B.: 1979, ‘Geostrophic turbulence’, Ann. Rev. Fluid Mechanics 11, 401–441.

    Article  ADS  Google Scholar 

  • Rhines, P.B., and W.R. Young: 1982, ‘Homogenization of potential vorticity in planetary gyres’, J. Fluid Mech. 122, 347–367.

    Article  ADS  MATH  Google Scholar 

  • Robinson, A.R.: 1983, Eddies in Marine Science ,Springer-Verlag, Berlin 609 pp.

    Google Scholar 

  • Ross, H.: 1987, Der einfluss des Triftsrtomes auf die horizontale Dispersion in der planetari sehen Grenzschichtl ,Diplomarbeit, IfM, Kiel 189 pp.

    Google Scholar 

  • Sarmiento, J. and K. Bryan: 1982, ‘An ocean transport model for the North Atlantic’, J. Geophys. Res. 87, 394–408.

    Article  ADS  Google Scholar 

  • Stammer, D.: 1986, Die jahreszeitliche Veraenderlíchkeit der isopyknischen potentiellen Vorticity in der Warmwasser sphere des Nordatlantiks, Diplomarbeit Inst. f. Meereskunde Kiel, 140 pp.

    Google Scholar 

  • Stammer, D. and J.D. Woods: 1987, Isopycnic potential vorticity atlas of the North Atlantic ocean ,Kiel Institut fuer Meereskunde Report No. 165, 108 pp.

    Google Scholar 

  • Steele, J.: 1978, Spatial patterns in plankton communities, Plenum, New York.

    Google Scholar 

  • Stommel, H. and F. Schott: 1977, ‘The beta spiral and the determination of the absolute velocity field from hydrographic station data’, Deep-Sea Research 24, 325–329.

    Article  Google Scholar 

  • Strass, V. and J.D. Woods: 1988, ‘Horizontal and seasonal variation of density and chlorophyll profiles between the Azores and Greenland’, in B.J. Rothschild (ed.), Towards a Theory on Biological-Physical Interactions in the World Ocean ,Kluwer Academic Publishers, Dordrecht, pp. 113–136.

    Google Scholar 

  • Walsby, A.F. and C.S. Reynolds: 1980, ‘Sinking and floating’, Ch. 10 in I. Morris (ed.), The Physiological Ecology of Phytoplankton ,Blackwell, Oxford.

    Google Scholar 

  • Welander, P.: 1971, ‘Thermocline Problem’, Phil. Trans. Roy. Soc. London A270, 69–73.

    Google Scholar 

  • Wolf, U. and J.D. Woods: 1988, ‘Lagrangian simulation of primary production in the physical environment -the deep chlorophyll maximum and nutricline’, in B.J. Rothschild (ed.), Towards a Theory on Biological-Physical Interactions in the World Ocean, Kluwer Academic Publishers, Dordrecht, pp. 51–70.

    Google Scholar 

  • Woods, J.D.: 1980, ‘Do waves limit turbulent diffusion in the ocean?’, Nature 288, 219–224.

    Article  ADS  Google Scholar 

  • Woods, J.D.: 1985, ‘The physics of thermocline ventilation’, in J.C.J. Nihoul (ed.), Coupled Ocean-Atmosphere Modelling, Elsevier, Amsterdam, pp. 543–590.

    Chapter  Google Scholar 

  • Woods, J.D. and W. Barkmann, 1986, ‘A lagrangian mixed layer model of Atlantic 18 degC water formation’, Nature 319, 574–576.

    Article  ADS  Google Scholar 

  • Woods, J.D., J. Fischer, and R. Onken: 1986, ‘Thermohaline intrusions created isopycnically at oceanic fronts are inclined to isopycnals’, Nature 322, 446–449.

    Article  ADS  Google Scholar 

  • Woods, J.D., A. Horch, and W. Barkmann: 1985, ‘Solar heating of the oceans’, Quart. J. roy. Meteor. Soc. 110, 633–656.

    ADS  Google Scholar 

  • Woods, J.D. and P.J. Minnett: 1979, ‘Analysis of mesoscale thermoclinicity with an example from the tropical thermocline during GATE’, Deep-Sea Res. 26, 85–96.

    Article  Google Scholar 

  • Woods, J.D. and R. Onken: 1982, ‘Diurnal variation and primary production in the ocean -preliminary results of a Lagrangian ensemble model’, J. Plankton Res. 4, 735–736.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Woods, J. (1988). Scale Upwelling and Primary Production. In: Rothschild, B.J. (eds) Toward a Theory on Biological-Physical Interactions in the World Ocean. NATO ASI Series, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3023-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3023-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7859-7

  • Online ISBN: 978-94-009-3023-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics