Skip to main content

Magnetosphere-Ionosphere Interactions — Near-Earth Manifestations of the Plasma Universe

  • Chapter
Plasma and the Universe
  • 115 Accesses

Abstract

As the Universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on our understanding of how matter behaves in the plasma state. In situ observations in the near-Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near-Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a result of the interactions between the magnetosphere and the ionosphere.

The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy and momentum between the two regions. The exchange is executed by magnetic-field aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic-field aligned (‘parallel’) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.

Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.

Copyright 1986 IEEE Reprinted with permission from IEEE Transactions on Plasma Science, Vol. PS-14, No.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, R. D.: 1967, ‘Nearly Monoenergetic Electron Fluxes Detected During a Visible Aurora’, Phys. Rev. Letters 18, 369.

    Article  ADS  Google Scholar 

  • Alfvén, H.: 1942, On the Cosmogony of the Solar System, Stockholms Observatoriums Annaler, I, Vol. 14, No. 2.

    Google Scholar 

  • Alfvén, H.: 1958, ‘On the Theory of Magnetic Storms and Aurorae’, Tellus 10, 104.

    Article  ADS  Google Scholar 

  • Alfvén, H.: 1977, ‘Electric Currents in Cosmic Plasmas’, Rev. Geophys. Space Phys. 15, 271.

    Article  ADS  Google Scholar 

  • Alfvén, H.: 1981, Cosmic Plasma, Monograph, D. Reidel Publ. Co., Dordrecht, Holland.

    Book  Google Scholar 

  • Alfvén, H.: 1984, ‘Cosmogony as an Extrapolation of Magnetospheric Research’, Space Sci. Rev. 39, 65.

    Article  ADS  Google Scholar 

  • Alfvén, H.: 1986a, ‘The Plasma Universe’, Phys. Today 39, 22.

    Article  Google Scholar 

  • Alfvén, H.: 1986b, ‘Model of the Plasma Universe’, IEEE Transaction on Plasma Science PS-14, 629.

    Article  ADS  Google Scholar 

  • Alfvén, H.: 1986c, ‘Double Layers and Circuits in Astrophysics’, IEEE Transactions on Plasma Science PS-14, 779.

    Google Scholar 

  • Alfvén, H. and Arrhenius, G.: 1976, Evolution of the Solar System, NASA Scientific Publ. 345, US Government Printing Office, Washington, D.C.

    Google Scholar 

  • Alfvén, H. and Falthammar, C.–G.: 1963, Cosmical Electrodynamics, Fundamental Principles, Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Araki, T., Kamei, T., and Tyemori, T.: 1984, ‘Polar Cap Vertical Currents Associated with Northward Interplanetary Magnetic Field’, Geophys. Res. Letters 11, 23.

    Article  ADS  Google Scholar 

  • Ashour-Abdalla, M. and Okuda, H.: 1983, ‘Transverse Acceleration of Ions on Auroral Field Lines’, in R. G. Johnson (ed.), Energetic Ions Composition in the Earth’s Magnetosphere, Terra Scientific Publ. Co., Tokyo, p. 43.

    Chapter  Google Scholar 

  • Ashour-Abdalla, M. and Okuda, H.: 1984, ‘Turbulent Heating of Heavy Ions on Auroral Field Lines’, J. Geophys. Res. 89, 2235.

    Article  ADS  Google Scholar 

  • Ashour-Abdalla, M., Okuda, H., and Cheng, C. Z.: 1981, ‘Acceleration of Heavy Ions on Auroral Field Lines’, Geophys. Res. Letters 8, 795.

    Article  ADS  Google Scholar 

  • Ashour-Abdalla, M., Schriver, D., and Okuda, H.: 1987, Transverse Ion Heating in Multicomponent Plasmas Along Auroral Zone Field Lines, Report PPG-1090, Center for Plasma Physics and Fusion Engineering, University of California, Los Angeles.

    Google Scholar 

  • Atkinson, G.: 1984a, ‘The Role of Currents in Plasma Redistribution, Magnetospheric Currents’, in T. Potemra (ed.), AGU Geophysical Monograph 28, Proc. Chapman Conf. on Magnetosphere Current Systems, Irvington, Virginia, April 5–8, 1983, Vol. 28, 325.

    Google Scholar 

  • Atkinson, G.: 1984b, ‘Field-Aligned Currents as a Diagnostic Tool: Result, a Renovated Model of the Magnetosphere’, J. Geophys. Res. 89, 217.

    Article  ADS  Google Scholar 

  • Atkinson, G.: 1984c, ‘Thick Current Sheets in the Renovated Model of the Magnetosphere’, J. Geophys. Res. 89, 8949.

    Article  ADS  Google Scholar 

  • Axford, W. I.: 1968, ‘The Polar Wind and the Terrestrial Helium Budget’, J. Geophys. Res. 73, 6855.

    Article  ADS  Google Scholar 

  • Baker, D. N., Fritz, T. A., Lennartsson, W., Wilken, B., Kroehl, H. W., and Birn, J.: 1985, ‘The Role of Heavy Ionospheric Ions in the Localizatin of Substorm Disturbances on March 22, 1979: CD AW 6’, J. Geophys. Res.90, 1273.

    Article  ADS  Google Scholar 

  • Banks, P. M. and Holzer, T. E.: 1968, ‘The Polar Wind’, J. Geophys. Res. 73, 6846.

    Article  ADS  Google Scholar 

  • Barfield, J. N., Saflekos, N. A., Sheehan, R. E., Carovillano, R. L., Potemra, T. A., and Knecht, D., 1986, ‘Three-Dimensional Observations of Birkeland Currents’, J. Geophys. Res. 91, 4393.

    Article  ADS  Google Scholar 

  • Baumjohann, W.: 1983, ‘Ionospheric and Field-Aligned Current Systems in the Auroral Zone: A Concise Review’, Adv. Space Res. 2, 55.

    Article  ADS  Google Scholar 

  • Bingham, R., Bryant, D. A., and Hall, D. S.: 1984, ‘A Wave Model for the Aurora’, Geophys. Res. Letters 11, 327.

    Article  ADS  Google Scholar 

  • Block, L. P.: 1972, ‘Potential Double Layers in the Ionosphere’, Cosmic Electrodyn. 3, 349.

    Google Scholar 

  • Block, L. P.: 1981, Physics of Auroral Arc Formation, AGU Geophysical Monograph 25, Am. Geophys. Union, Washington D.C., p. 218.

    Google Scholar 

  • Block, L. P.: 1984, ‘Three-Dimensional Potential Structure Associated With Birkeland Currents, Magnetospheric Currents’, in T. Potemra(ed.), AGXJ Geophysical Monograph 28, Proc. Chapman Conf. on Magnetosphere Current Systems, Irvington, Virginia, April 5–8, 1983, p. 315.

    Google Scholar 

  • Block, L. P.: 1987, ‘Acceleration of Auroral Particles by Magnetic-Field Aligned Electric Fields’, Proc. 8th ESA Symposium on European Rocket and Balloon Programmes and Relates Research, Sunne, Sweden, 17–23 May, 1987, ESA SP-270, p. 281.

    Google Scholar 

  • Block, L. P. and Fälthammar, C.–G.: 1968, ‘Effects of Field-Aligned Currents on the Structure of the Ionosphere’, J. Geophys. Res. 73, 4807.

    Article  ADS  Google Scholar 

  • Block, L. P. and Fälthammar, C.–G.: 1969, in B. M. Mormac and A. Omholt (eds.), Field-Aligned. Currents and Auroral Precipitation in Atmospheric Emissions, Proc. NATO Adv. Study Inst., As, Norway, July 29-August 9, 1968, p. 285.

    Google Scholar 

  • Block, L. P. and Fälthammar, C.–G.: 1976, ‘Mechanisms that May Support Magnetic Field-Aligned Electric Fields in the Magnetosphere’, Ann. Geophys. 32, 161.

    Google Scholar 

  • Block, L. P., Fälthammar, C.–G., Lindqvist, P.–A., Marklund, G. T., Mozer, F. S., and Pedersen, A.: 1987, ‘Electric Field Measurements on Viking: First Results’, Geophys. Res. Letters 14, 435.

    Article  ADS  Google Scholar 

  • Boehm, M. H. and Mozer, F. S.: 1981, ‘An S3–3 Search for Confined Regions of Large Parallel Electric Fields’, Geophys. Res. Letters 8, 607.

    Article  ADS  Google Scholar 

  • Boehm, M. H., Carlson, C. W., Madden, J. and Mozer, F. S.: 1984, ‘Observations of Double-Layer-Like and Soliton-Like Structures in the Ionosphere’, Geophys. Res. Letters 11, 511.

    Article  ADS  Google Scholar 

  • Borovsky, J. E.: 1984, ‘The Production of Ion Conies by Oblique Double Layers’, J. Geophys. Res. 89, 2251.

    Article  ADS  Google Scholar 

  • Borovsky, J. E. and Joyce, G.: 1986, ‘The Direct Production of Ion Conies by Plasma Double Layers’, in T. Chang (ed.), Ion Acceleration in the Magnetosphere and Ionosphere, AGU Geophysical Monograph Vol.38, p. 317.

    Chapter  Google Scholar 

  • Bryant, D. A.: 1983, ‘The Hot Electrons in and Above the Auroral Ionosphere: Observations and Physical Implications’, inHigh Latitude Space Plasma Physics, Plenum, New York, 295, 1983.

    Google Scholar 

  • Bryant, D. A.: 1987, ‘Wave Acceleration of Auroral Electrons’, 8th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Sunne, Sweden, 17–23 May, 1987, ESA SP-270, p. 273.

    Google Scholar 

  • Brüning, K. and Goertz, C.: 1985, ‘Influence of the Electrons Source Distribution on Field-Aligned Currents’, Geophys. Res. Letters 12, 53.

    Article  ADS  Google Scholar 

  • Burch, J. L., Reiff, P. H., and Sugiura, M.: 1983, ‘Upward Electron Beams Measured by DE-1: A Primary Source of Dayside Region-1 Birkeland Currents’, Geophys. Res. Letters 10, 753.

    Article  ADS  Google Scholar 

  • Burch, J. L., Reiff, P. H., Menietti, J. D., Heelis, R. A., Hanson, W. B., Shawhan, S. D., Shelley, E. G., Sugiura, M., Weimer, D. R., and Winningham, J. D.: 1985, ‘IMF By-Dependent Plasma Flow and Birkeland Currents in the Dayside Magnetosphere 1. Dynamics Explorer Observations’, J. Geophys. Res. 90, 1577.

    Article  ADS  Google Scholar 

  • Burke, W. J.: 1984, Electric Fields and Currents Observed by S3–2 in the Vicinity of Discrete Arcs, Magnetospheric Currents’, in T. Potemra (ed.), AGU Geophysical Monograph 28, Proc. Chapman Conf. on Magnetospheric Current Systems, Irvington, Virginia, April 5–8, 1983, Vol. 28, 294.

    Google Scholar 

  • Bythrow, P. F., Doyle, M. A., Potemra, T. A., Zanetti, L. J., Huffman, R. E., Meng, C. I., Hardy, D. A., Rich, F. J., and Heelis, R. A.: 1986, ‘Multiple Auroral Arcs and Birkeland Currents: Evidence for Plasma Sheet Boundary Waves’, Geophys. Res. Letters 13, 805.

    Article  ADS  Google Scholar 

  • Bythrow, P. F., Potemra, T. A., Hanson, W. B., Zanetti, L. J., Meng, C.–I., Huffman, R. E., Rich, F. J. and Hardy, D. A.: 1984, ‘Earthward Directed High-Density Birkeland Currents Observed by HILAT’, J. Geophys. Res. 89, 9114.

    Article  ADS  Google Scholar 

  • Bythrow, P. F., Potemra, T. A., Zanetti, L. J., Erlandson, R. A., Hardy, D. A., Rich, F. J., and Acuna, M. H.: 1987, ‘High Latitude Currents in the 0600 to 0900 MLT Sector: Observatins from Viking and DMSP-F7’, Geophys. Res. Letters 14, 423.

    Article  ADS  Google Scholar 

  • Cattell, C.: 1981, ‘The Relationship of Field-Aligned Currents to Electrostatic Ion-Cyclotron Waves’, J. Geophys. Res. 86, 3641.

    Article  ADS  Google Scholar 

  • Cattell, C.: 1984, ‘Association of Field-Aligned Currents with Small-Scale Auroral Phenomena, Magnetospheric Currents’, in T. Potemra (ed.), AGU Geophysical Monograph 28, Proc. Chapman Conf. on Magnetosphere Current Systems, Irvington, Virginia, April 5–8, 1983.

    Google Scholar 

  • Chang, T. (editor-in-chief): 1986, Ion Acceleration in the Magnetosphere and Ionosphere, Geophysical Monograph 38, American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Chang, T. and Coppi, B.: 1981, ‘Lower Hybrid Acceleration and Ion Evolution in the Supraauroral Region’, Geophys. Res. Letters 8, 1253.

    Article  ADS  Google Scholar 

  • Chappell, C. R., Moore, T. E., and Waite, J. G., Jr.: 1987, ‘The Ionosphere as a Fully Adequate Source of Plasma for the Earth’s Magnetosphere’, J. Geophys. Res. 92, 5896.

    Article  ADS  Google Scholar 

  • Cladis, J. B.: 1986, ‘Parallel Acceleration and Transport of Ions from Polar Ionosphere to Plasma Sheet’, Geophys. Res. Letters 13, 893.

    Article  ADS  Google Scholar 

  • Cladis, J. G. and Francis, W. E.: 1985, The Polar Ionosphere as a Source of the Storm Time Ring Current’, J. Geophys. Res. 90, 3465.

    Article  ADS  Google Scholar 

  • Clauer, C. R. and Kamide, Y.: 1985, ‘DP 1 and DP 2 Current Systems for the March 22, 1979 Substorms’, J. Geophys. Res. 90, 1343.

    Article  ADS  Google Scholar 

  • Clauer, C. R., Banks, P. M., Smith, A. Q., Jørgensen, T. S., Friis-Christensen, E., Vennerstrom, S., Wickwar, V. B., Kelly, J. D. and Doupnik, J.: 1984, ‘Observation of Interplanetary Magnetic Feld and of Ionospheric Plasma Convection in the Vicinity of the Dayside Polar Cleft’, Geophys. Res. Letters 11, 891.

    Article  ADS  Google Scholar 

  • Collin, H. L., Sharp, R. D., and Shelley, E. G.: 1984, ‘The Magnitude and Composition of the Outflow of Energetic Ions from the Ionsophere’, J. Geophys. Res. 89, 2185.

    Article  ADS  Google Scholar 

  • Cowley, S. W. H.: 1980, ‘Plasma Populations in a Simple Open Model Magnetosphere’, Space Sci. Rev. 26, 217.

    Article  ADS  Google Scholar 

  • DeCoster, R. J. and Frank, L. A.: 1979, ‘Observations Pertaining to the Dynamics of the Plasma Sheet’, J. Geophys. Res. 84, 5099.

    Article  ADS  Google Scholar 

  • DeForest, S. E. and Mcllwain, C. E.: 1971, ‘Plasma Clouds in the Magnetosphere’, J. Geophys. Res. 76, 3587.

    Article  ADS  Google Scholar 

  • Dessler, A. J.: 1984, ‘The Evolution of Arguments Regarding the Existence of Field-Aligned Currents, Magnetospheric Currents’, in T. Potemra (ed.), AGU Geophysical Monograph 28, Proc. Chapman Conf. on Magnetosphere Current System, Irvington, Virginia, April 5–8, 1983, pp. 22–28.

    Google Scholar 

  • Dessler, A. J., Hanson, W. B., and Parker, E. N.: 1961, ‘Formation of the Geomagnetic Storm Main-Phase Ring Current’, Geophys. Res. 66, 3631.

    Article  ADS  Google Scholar 

  • Dessler, A. J. and Michel, F. C.: 1966, ‘Plasma in the Geomagnetic Tail’, J. Geophys. Res. 71, 1421.

    ADS  Google Scholar 

  • Dusenbery, P. B. and Lyons, L. R.: 1981, ‘Generation of Ion-Conic Distribution by Upgoing Ionospheric Electrons’, J. Geophys. Res. 86, 7627.

    Article  ADS  Google Scholar 

  • Erlandson, R. E., Pottelette, R., Potemra, T. A., Zanetti, L. J., Bahnsen, A., Lundin, R., and Hamelin, M.: 1987, Geophys. Res. Letters 14, 431.

    Article  ADS  Google Scholar 

  • Evans, D. S., 1968, ‘The Observations of a Near-Monoenergetic Flux of Auroral Electrons’, J. Geophys. Res. 73, 2315.

    Article  ADS  Google Scholar 

  • Evans, D. S.: 1974, ‘Precipitating Electron Fluxes Formed by a Magnetic Field-Aligned Potential Difference’, J. Geophys. Res. 79, 2853.

    Article  ADS  Google Scholar 

  • Eviatar, A. and Siscoe, G. L.: 1980, ‘Limit on Rotational Energy Available to Excite Jovian Aurora’, Geophys. Res. Letters 7, 1085.

    Article  ADS  Google Scholar 

  • Fälthammar, C.–G.: 1977, ‘Problems Related to Macroscopic Electric Fields in the Magnetosphere’, Rev. Geophys. Space Phys. 15, 457.

    Article  ADS  Google Scholar 

  • Fälthammar, C.–G.: 1978, ‘Generation Mechanisms for Magnetic-Field-Aligned Electric Fields in the Magnetosphere’, J. Geomagn. Geoelectr. 30, 419.

    Article  ADS  Google Scholar 

  • Fälthammar, C.–G.: 1983, ‘Magnetic-Field-Aligned Electric Fields’, ESA J.7, 385.

    ADS  Google Scholar 

  • Fälthammar, C.–G.: 1985, Magnetosphere-Ionosphere Coupling, ESA SP-235, p. 107.

    Google Scholar 

  • Fälthammar, C.–G., Akasofu, S.–I., and Alfvén, H.: 1978, ‘The Significance of Magnetospheric Research for Progress in Astrophysics’, Nature 275, 185.

    Article  ADS  Google Scholar 

  • Fälthammar, C.–G., Block, L. P., Lindqvist, P.–A., Marklund, G. T., Pedersen, A., and Mozer, F. S.: 1987, ‘Preliminary Results from the DC Electric Field Experiment on Viking’, Ann. Geophys. 5A, 171.

    ADS  Google Scholar 

  • Friedman, M. and Lemaire, J.: 1980, ‘Relationship Between Auroral Fluxes and Field-Aligned Electric Potential Differences’, J. Geophys. Res. 85, 664.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Wilken, B., Stüdemann, W., Ipavich, F. M., Hovestadt, D., Hamilton, D. C., and Kremser, G.: 1985, ‘First Composition Measurement of the Bulk of the Storm-Time Ring Current (1 to 300 keV/e) with AMPTE-CCE’, Geophys. Res. Letters 12, 325.

    Article  ADS  Google Scholar 

  • Gorney, D. J., Clarke, A., Croley, D., Fennell, J., Luhmann, J., and Mizera, P.: 1981, ‘The Distribution of Ion Beams and Conies below 8000 km’, J. Geophys. Res. 86, 83.

    Article  ADS  Google Scholar 

  • Gorney, D. J., Chiu, Y. T., and Croley, Jr., D. R.: 1985, ‘Trapping of Ion Conies by Downward Parallel Electric Fields’, J. Geophys. Res. 90, 4205.

    Article  ADS  Google Scholar 

  • Green, J. L., Waite, J. H., Chappell, C. R., Chandler, M. O., Doupnik, J. R., Richards, P. G., Heelis, R., Shawhan, S. D., and Brace, L. H.: 1986, ‘Observations of Ionospheric Magnetospheric Coupling: DE and Chatanika Coincidences’, J. Geophys. Res. 91, 5803.

    Article  ADS  Google Scholar 

  • Greenspan, M. E.: 1984, ‘Effects of Oblique Double Layers on Upgoing Ion Pitch Angle and Gyrophase’, J. Geophys. Res. 89, 2842.

    Article  ADS  Google Scholar 

  • Greenspan, M. E., Silevitch, M. B., and Whipple, E. C., Jr.: 1981, ‘On the Use of Electron Data to Infer the Structure of Parallel Electric Fields’, J. Geophys. Res. 86, 2175.

    Article  ADS  Google Scholar 

  • Greenwald, R. A.: 1982, ‘Recent Advances in Magnetosphere-Ionosphere Coupling’, Rev. Geophys. Space Phys. 20, 577.

    Article  ADS  Google Scholar 

  • Gurgioli, C. and Burch, J. L.: 1982, ‘DE-1 Observations of the Polar Wind — A Heated and an Unheated Component’, Geophys. Res. Letters 9, 945.

    Article  ADS  Google Scholar 

  • Gurgioli, C. and Burch, J. L.: 1985, ‘Composition of the Polar Wind - Not Just H+and He+’, Geophys. Res. Letters 12, 69.

    Article  ADS  Google Scholar 

  • Gurnett, D. A. and Frank, L. A.: 1977, ‘A Region of Intense Plasma Wave Turbulence on Auroral Field Lines’, J. Geophys. Res. 82, 1031.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Huff, R. L., Menietti, J. D., Burch, J. L., Winningham, J. D., and Shawhan, S. D.: 1984, ‘Correlated Low-Frequency Electric and Magnetic Noise Along the Auroral Field Lines’, J. Geophys. Res. 89, 8971.

    Article  ADS  Google Scholar 

  • Haerendel, G.: 1980, ‘Auroral Particle Acceleration — An Example of a Universal Plasma Process’, ESA J. 4, 197.

    ADS  Google Scholar 

  • Haerendel, G.: 1981, ‘Magnetospheric Processes Possibly Related to the Origin of Cosmic Rays, Origin of Cosmic Rays’, in G. Setti, G. Spada, and A. W. Wolfendale (eds.), IAU Symp. 94, 373.

    Google Scholar 

  • Haerendel, G.: 1983, in B. Hultqvist and T. Hagfors (eds.), An Alfvén Wave Model of Auroral Arcs, High-Latitude Space Plasma Physics, Plenum Press, New York, p. 515.

    Google Scholar 

  • Haerendel, G., Rieger, E., Valenzuela, A., Föppl, H., Stenbaek-Nielsen, H. C., and Wescott, E. M.: 1976, ‘First Observation of Electrostatic Acceleration of Barium Ions into the Magnetosphere’, ESA SP-115, 203.

    Google Scholar 

  • Hall, D. S. and Bryant, D. A.: 1974, ‘Collimation of Auroral Particles by Time-Varying Acceleration’, Nature 251, 402.

    Article  ADS  Google Scholar 

  • Hall, D. S., Bryant, D. A., and Bingham, R.: 1984, ‘Electron Acceleration by Lower Hybrid Waves on Auroral Field Lines’, Adv. Space Res. 4, 515.

    Article  ADS  Google Scholar 

  • Hanson, W. B. and Patterson, T. N. L.: 1963, ‘Diurnal Variation of the Hydrogen Concentration in the Exosphere’, Planetary Space Sci. 11, 1035.

    Article  ADS  Google Scholar 

  • Heelis, R. A., Winningham, J. D., Sugiura, M., and Maynard, N. C.: 1984, ‘Particle Acceleration Parallel and Perpendicular to the Magnetic Field Observed by DE-2’, J. Geophys. Res.89, 3893.

    Article  ADS  Google Scholar 

  • Heikkila, W. J.: 1982, ‘Impulsive Plasma Transport Through the Magnetopause’, Geophys. Res. Letters 9, 159.

    Article  ADS  Google Scholar 

  • Hill, T. W.: 1984, in T. Potemra (ed.), Rotationally-Induced Birkeland Current Systems, Magnetospheric Currents, AGU Geophysical Monograph 28, Proc. Chapman Conf. on Magnetosphere Current Systems, Irvington, Viginia, April 5–8, 1983, p. 340.

    Google Scholar 

  • Hill, T. W., Dessler, A. J., and Rassbach, M. E.: 1983, ‘Aurora on Uranus: A Faraday Disc Dynamo Mechanism’, Planetary Space Sci. 31, 1187.

    Article  ADS  Google Scholar 

  • Horwitz, J. L.: 1982, ‘The Ionosphere as a Source for Magnetospheric Ions’, Rev. Geophys. Space Phys. 20, 929.

    Article  ADS  Google Scholar 

  • Horwitz, J. L.: 1984, ‘Residence Time Heating Effect in Auroral Conic Generation’, Planetary Space Sci. 32, 1115.

    Article  ADS  Google Scholar 

  • Horwitz, J. L., Brace, L. H., Comfort, R. H., and Chappell, C. R.: 1986, ‘Dual-Spacecraft Measurements of Plasmasphere-Ionosphere Coupling’, J. Geophys. Res.91, 11203.

    Article  ADS  Google Scholar 

  • Horwitz, J. L., Confort, R. H., and Chappell, C. R.: 1984, ‘Thermal Ion Composition Measurements of the Formation of the New Outer Plasmasphere and Double Plasmapause During Storm Recovery Phase’, Geophys. Res. Letters 11, 701.

    Article  ADS  Google Scholar 

  • Hruška, A.: 1986, ‘Field-Aligned Currents in the Earth Plasma Sheet’, J. Geophys. Res. 91, 371.

    Article  ADS  Google Scholar 

  • Huang, C. Y., Frank, L. A., and Eastman, T. E.: 1984, ‘High-Altitude Observations of an Intense Inverted V Event’, Z Geophys. Res. 89, 7423.

    Article  ADS  Google Scholar 

  • Hudson, M. K., Lotko, W., Roth, I., and Witt, E.: 1983, ‘Solitary Waves and Double Layers on Auroral Field Lines’, J. Geophys. Res. 88, 916.

    Article  ADS  Google Scholar 

  • Hultqvist, B.: 1971, ‘On the Production of a Magnetic-Field Aligned Electric Field by the Interaction between the Hot Magnetospheric Plasma and Cold Ionosphere’, Planetary Space Sci. 19, 749.

    Article  ADS  Google Scholar 

  • Hultqvist, B.: 1983a, ‘On the Origin of the Hot Ions in the Disturbed Dayside Magnetosphere’, Planetary Space Sci.31, 173.

    Article  ADS  Google Scholar 

  • Hultqvist, B.: 1983b, ‘On the Dynamics of the Ring Current’, J. Geophys. 52, 203.

    Google Scholar 

  • Hultqvist, B.: 1985, ‘Observations of Low-Energy Plasma Outside the Plasmasphere’, Space Sci. Rev. 42, 275.

    Article  ADS  Google Scholar 

  • Hultqvist, B., Lundin, R., and Stasiewicz, K.: 1986, ‘Ion Interactions in the Magnetospheric Boundary Layer’, in T. Chang (ed.), Ion Acceleration in the Magnetosphere and Ionosphere, AGU Geophysical Monograph 38, p. 127.

    Chapter  Google Scholar 

  • Iijima, T., Potemra, T. A., Zanetti, L. J., and Bythrow, P. F.: 1984, ‘Large-Scale Birkeland Currents in the Dayside Polar Region During Strongly Northward IMF: A New Birkeland Current System’, J. Geophys. Res. 89, 7441.

    Article  ADS  Google Scholar 

  • Ipavich, F. M., Galvin, A. B., Gloeckler, G., Hovestadt, D., Klecker, B., and Scholer, M.: 1984, ‘Energetic (>100 k) O+Ions in the Plasma Sheet’, Geophys. Res. Letters 11, 504.

    Article  ADS  Google Scholar 

  • Ipavich, F. M., Galvin, A. B., Scholer, M., Gloeckler, G., Hovestadt, D., and Klecker, B.: 1985, ‘Suprathermal O+and H+Ion Behavior During the March 22, 1979 (CDAW 6) Substorms’, J. Geophys. Res. 90, 1263.

    Article  ADS  Google Scholar 

  • Johnson, R. G. (ed.): 1983, Energetic Ion Composition in the Earths Magnetosphere, Terra Scientific Publ. Co., Tokyo and D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Kan, J. R., Williams, R. L., and Akasofu, S.–I.: 1984, ‘A Mechanism for the Westward Travelling Surge During Substorms’, J. Geophys. Res. 89, 2211.

    Article  ADS  Google Scholar 

  • Kaufmann, R. L.: 1984, ‘What Auroral Electron and Ion Beams Tell Us about Magnetosphere-Ionosphere Coupling’, Space Sci. Rev. 37, 313.

    Article  ADS  Google Scholar 

  • Kaufmann, R. L. and Kintner, P. M.: 1982, ‘Upgoing Ion Beams. 1. Microscopic Analysis’, J. Geophys. Res. 87, 10487.

    Article  ADS  Google Scholar 

  • Kaufmann, R. L. and Kintner, P. M.: 1984, ‘Upgoing Ion Beams: 2. Fluid Analysis and Magnetosphere-Ionosphere Coupling’, J. Geophys. Res. 89, 2195.

    Article  ADS  Google Scholar 

  • Kellogg, P. J., Monso, S. J., and Whalen, B. A.: 1984, ‘Observation of Double-Layer-Like Structures at Rocket Altitudes’, Geophys. Res. Letters 11, 515.

    Article  ADS  Google Scholar 

  • Kelly, T. J., Russell, C. T., Walker, R. J., Parks, G. K., and Gosling, J. T.: 1986, ‘ISEE 1 and 2 Observations of Birkeland Currents in the Earth’s Inner Magnetosphere’, J. Geophys. Res. 91, 6945.

    Article  ADS  Google Scholar 

  • Kintner, P. M. and Gorney, D. J.: 1984, ‘A Search for the Plasma Processes Associated with Perpendicular Ion Heating’, J. Geophys. Res. 89, 937.

    Article  ADS  Google Scholar 

  • Kintner, P. M., Kelley, M. C., Sharp, R. D., Ghielmetti, A., Temerin, M., Catell, C. A., Mizera, P. F., and Fennell, J. F.: 1979, ‘Simultaneous Observations of Energetic (keV) Upstreaming Ions and Electrostatic Hydrogen Cyclotron Waves’, J. Geophys. Res. 84, 7201.

    Article  ADS  Google Scholar 

  • Kintner, P. M., LaBelle, J., Scales, W., Yau, A. W., and Whalen, B. A.: 1986, ‘Observations of Plasma Waves Within Regions of Perpendicular Ion Acceleration’, Geophys. Res. Letters 13, 1113.

    Article  ADS  Google Scholar 

  • Kletzing, C., Catell, C., and Mozer, F. S.: 1983, ‘Evidence for Electrostatic Shocks as the Source of Discrete Auroral Arcs’, J. Geophys. Res. 88, 4105.

    Article  ADS  Google Scholar 

  • Knight, S.: 1973, ‘Parallel Electric Fields’, Planetary Space Sci. 21, 741.

    Article  ADS  Google Scholar 

  • Kremser, G., Stüdemann, W., Wilken, B., Gloeckler, G., Hamilton, D. C., and Ipavich, F. M.: 1987, ‘Average Spatial Distributions of Energetic O+, O2 +, O6 +, and C6 +Ions in the Magnetosphere Observed by AMPTE CCE’, J. Geophys. Res. 92, 4459.

    Article  ADS  Google Scholar 

  • Lemaire, J.: 1977, ‘Impulsive Penetration of Filamentary Plasma Elements Into the Magnetospheres of the Earth and Jupiter’, Planetary Space Sci. 25, 887.

    Article  ADS  Google Scholar 

  • Lemaire, J. and Scherer, M.: 1974, ‘Ionosphere Plasma Sheet Field-Aligned Currents and Parallel Electric Fields’, Planetary Space Sci. 22, 1485.

    Article  ADS  Google Scholar 

  • Lemaire, J. and Scherer, M.: 1983, ‘Field-Aligned Current Density Versus Electric Potential Characteristics for Magnetospheric Flux Tubes’, Ann. Geophys. 1, 91.

    ADS  Google Scholar 

  • Lemaire, J., Rycroft, M. J., and Roth, M.: 1979, ‘Control of Impulsive Penetration of Solar Wind Irregularities Into the Magnetosphere by the Interplanetary Magnetic Field Direction’, Planetary Space Sci. 27, 47.

    Article  ADS  Google Scholar 

  • Lennartsson, W.: 1980, ‘On the Consequences of the Interaction between the Auroral Plasma and the Geomagnetic Field’, Planetary Space Sci. 28, 135.

    Article  ADS  Google Scholar 

  • Lennartsson, W., Sharp, R. D., and Zwickl, R. D.: 1984, ‘Substorm Effects on the Plasma Sheet Ion Composition on March 22, 1979 (CDAW 6)’, J. Geophys. Res.90, 1243.

    Article  ADS  Google Scholar 

  • Lin, C. S. and Rowland, H. L.: 1985, ‘Anomalous Resistivity and AE-D Observations of Auroral Electron Acceleration’, J. Geophys. Res. 90, 4221.

    Article  ADS  Google Scholar 

  • Lockwood, M.: 1982, ‘Thermal Ion Flows in the Topside Auroral Ionosphere and the Effects of Low-Altitude, Transverse Acceleration’, Planetary Space Sci. 30, 595.

    Article  ADS  Google Scholar 

  • Lockwood, M.: 1983, ‘Field-Aligned Plasma Flow in the Quiet, Mid-Latitude Ionosphere Deduced from Topside Soundings’, J. Atmospheric Terrest. Phys. 45, 1.

    Article  ADS  Google Scholar 

  • Lockwood, M. and Titheridge, J. E.: 1981, ‘Ionospheric Origin of Magnetospheric O+Ions’, Geophys. Res. Letters 8, 381.

    Article  ADS  Google Scholar 

  • Lockwood, M. and Titheridge, J. E.: 1982, ‘Departures from Diffuse Equilibrium in the Topside F-Layer from Satellite Soundings’, J. Atmospheric Terrest. Phys. 44, 425.

    Article  ADS  Google Scholar 

  • Lockwood, M., Waite, J. H., Jr., Moore, T. E., Johnson, J. F. E., and Chappell, C. R.: 1985, ‘A New Source of Suprathermal O+Ions Near the Dayside Polar Cap Boundary’, J. Geophys. Res. 90, 4099.

    Article  ADS  Google Scholar 

  • Lotko, W.: 1986, ‘Diffusive Acceleration of Auroral Primaries’, J. Geophys. Res. 91, 191.

    Article  ADS  Google Scholar 

  • Lundin, R.: 1984, ‘Solar Wind Energy Transfer Regions Inside the Dayside Magnetopause. II. Evidence for an MHD Generator Process’, Planetary Space Sci. 32, 757.

    Article  ADS  Google Scholar 

  • Lundin, R. and Dubinin, E. M.: 1985, ‘Solar Wind Energy Transfer Regions Inside the Dayside Magnetopause. III. Accelerated Heavy Ions as Tracers for MHD-Processes in the Dayside Boundary Layer’, Planetary Space Sci. 33, 891.

    Article  ADS  Google Scholar 

  • Lundin, R. and Sandahl, I.: 1978, ‘Some Characteristics of the Parallel Electric Field Acceleration of Electrons over Discrete Auroral Arcs as Observed from two Rocket Flights’, ESA SP-135, 125.

    Google Scholar 

  • Lyons, L. R., Evans, D. S., and Lundin, R.: 1979, ‘An Observed Relation between Magnetic Field-Aligned Electric Fields and Downward Electron Energy Fluxes in the Vicinity of Auroral Forms’, J. Geophys. Res. 84, 457.

    Article  ADS  Google Scholar 

  • Lysak, R. L., Hudson, M. K., and Temerin, M.: 1980, ‘Ion Heating by Strong Electrostatic Ion Cyclotron Turbulence’, J. Geophys. Res. 85, 678.

    Article  ADS  Google Scholar 

  • Marklund, G. T., Raadu, M. A., and Lindqvist, P.–A.: 1985, ‘Effects of Birkeland Current Limitation on High-Latitude Convection Patterns’, J. Geophys. Res. 90, 10864.

    Article  ADS  Google Scholar 

  • Mauk, B. H. and Zanetti, L. J.: 1986, IUGG Quadrennial Report on: Magnetospheric Electric Fields and Currents, APL/JHU 86–16, Space Physics Group, The Johns Hopkins University, Laurel, Md.

    Google Scholar 

  • McIlwain, C. E.: 1960, ‘Direct Measurements of Particles Producing Visible Auroras’, J. Geophys. Res. 65, 2727.

    Article  ADS  Google Scholar 

  • Menietti, J. D. and Burch, J. L.: 1981, ‘A Satellite Investigation of Energy Flux and Inferred Potential Drop in Auroral Electron Energy Spectra’, Geophys. Res. Letters 8, 1095.

    Article  ADS  Google Scholar 

  • Mitchell, H. G. and Palmadesso, P. J.: 1984, ‘O+Acceleration Due to Resistive Momentum Transfer in the Auroral Field Line Plasma’, J. Geophys. Res. 89, 7573.

    Article  ADS  Google Scholar 

  • Moore, T. E., Chappell, C. R., Lockwood, M., and Waite, J. H., Jr.: 1985, ‘Superthermal Ion Signatures of Auroral Acceleration Processes’, J. Geophys. Res. 90, 1611.

    Article  ADS  Google Scholar 

  • Moore, T. E., Lockwood, M., Chandler, M. O., Waite, J. H., Jr., Chappell, C. R., Persoon, A., and Sugiura, M.: 1986, ‘Upwelling O+Ion Source Characteristics’, J. Geophys. Res. 91, 7019.

    Article  ADS  Google Scholar 

  • Moore, T. E., Lockwood, M., Chandler, M. O., Waite, J. H., Jr., Chappell, C. R., Persoon, A., and Sugiura, M.: 1986, “Upwelling O+Ion Source Characteristics’, J. Geophys. Res. 91, 7019.

    Article  ADS  Google Scholar 

  • Moore, T. E., Pollock, C. J., Arnoldy, R. L., and Kintner, P. M.: 1986, ‘Preferential O+Heating in the Topside Ionosphere’, Geophys. Res. Letters 13, 901.

    Article  ADS  Google Scholar 

  • Mozer, F. S., Carlson, C. W., Hudson, M. K., Torbert, R. B., Parady, B., Yatteau, J., and Kelley, M. C.: 1977, ‘Observations of Paires Electrostatic Shocks in the Polar Magnetosphere’, Phys. Rev. Letters 38, 292.

    Article  ADS  Google Scholar 

  • Mozer, F. S. and Torbert, R. B.: 1980, ‘An Average Parallel Electric Field Deduced from the Latitude and Altitude Variations of the Perpendicular Electric Field Below 8000 Kilometers’, Geophys. Res. Letters 7, 219.

    Article  ADS  Google Scholar 

  • Mozer, F. S., Cattell, C. A., Temerin, M., Torbert, R. B., von Glinski, S., Woldroft, M., and Wygrant, J.: 1979, ‘The dc and ac Electric Field, Plasma Density, Plasma Temperature and Field-Aligned Current Experiments on the S3–3 Satellite’, J. Geophys. Res. 84, 5875.

    Article  ADS  Google Scholar 

  • Mozer, F. S., Cattell, C. A., Hudson, M. K., Lysak, R. L., Temerin, M., and Torbert, R. B.: 1980, ‘Satellite Measurements and Theories of Low Altitude Auroral Particle Acceleration’, Space Sci. Rev. 27, 155.

    Article  ADS  Google Scholar 

  • Nagai, T.: 1987, ‘Field-Aligned Currents Associated with Substorms in the Vicinity of Synchronous Orbit. 2. GOES 2 and GOES 3 Observations’, J. Geophys. Res. 92, 2432.

    Article  ADS  Google Scholar 

  • Nagai, T., Singer, H. J., Ledley, B. G., and Olsen, R. C.: 1987, ‘Field-Aligned Currents Associated with Substorms in the Vicinity of Synchronous Orbit. 1. The July 5, 1979, Substorm Observed by SCATHA, GOES 3, and GOES 2’, J. Geophys. Res. 92, 2425.

    Article  ADS  Google Scholar 

  • Nagai, T., Waite, J. H., Jr., Green, J. L., Chappell, C. R., Olsen, R. C., and Comfort, R. H.: 1984, ‘First Measurements of Supersonic Polar Wind in the Polar Magnetosphere’, Geophys. Res. Letters 11, 669.

    Article  ADS  Google Scholar 

  • Newman, A. L.: 1985, Effect of Low Altitude Ambipolar Diffusion on High Altitude Particle Distributions, paper presented at the 2nd Int. School of Space Simulations, Kapaa, 1985.

    Google Scholar 

  • Nishikawa, K.–I., Okuda, H., and Hasegawa, A.: 1985, ‘Heating of Heavy Ions on Auroral Field Lines in the Presence of a Large Amplitude Hydrogen Cyclotron Wave’, J. Geophys. Res. 90, 419.

    Article  ADS  Google Scholar 

  • O’Brien, B. J.: 1970, ‘Consideration that the Source of Auroral Energetic Particle is not a Parallel Electrostatic Field’, Planetary Space Sci. 18, 1821.

    Article  ADS  Google Scholar 

  • Ohsawa, Y.: 1986, ‘Resonant Ion Acceleration by Oblique Magnetosonic Shock Wave in a Collisionless Plasma’, Phys. Fluids 29, 773.

    Article  ADS  MATH  Google Scholar 

  • Okuda, H.: 1984, ‘Turbulent Heating of Heavy Ions on Auroral Field Lines’, J. Geophys. Res. 89, 2235.

    Article  ADS  Google Scholar 

  • Okuda, H. and Ashour-Abdalla, M.: 1981, ‘Formation of a Conical Distribution and Intense Ion Heating in the Presence of Hydrogen Cyclotron Waves’, Geophys. Res. Letters 8, 811.

    Article  ADS  Google Scholar 

  • Okuda, H. and Ashour-Abdalla, M.: 1983, ‘Acceleration of Hydrogen Ions and Conic Formation Along Auroral Field Lines’, J. Geophys. Res. 88, 899.

    Article  ADS  Google Scholar 

  • Papadopoulos, K., Gaffey, J. D., Jr., and Palmadesso, P. J.: 1980, ‘Stochastic Acceleration of Large M/Q Ions by Hydrogen Cyclotron Waves in the Magnetosphere’, Geophys. Res. Letters 7, 1014.

    Article  ADS  Google Scholar 

  • Persoon, A. M., Gurnett, D. A., and Shawhan, S. D.: 1983, ‘Polar Cap Electron Densities from DE-1 Plasma Wave Observations’, J. Geophys. Res. 88, 10123.

    Article  ADS  Google Scholar 

  • Persson, H.: 1963, ‘Electric Field Along a Magnetic Line of Force in a Low-Density Plasma’, Phys. Fluids 6, 1756.

    Article  ADS  Google Scholar 

  • Persson, H.: 1966, ‘Electric Field Parallel to the Magnetic Field in a Low-Density Plasma’, Phys. Fluids 9, 1090.

    Article  ADS  Google Scholar 

  • Potemra, T. (ed.): 1984, Magnetospheric Currents, AGU Geophysical Monograph 28.

    Google Scholar 

  • Potemra, T. A. and Zanetti, L. J.: 1985, ‘Characteristics of Large-Scale Birkeland Currents in the Cusp and Polar Regions’, in J. A. Holtet and A. Egeland (eds.), Proc. of the NATO Advanced Workshop on Morphology and Dynamics of the Polar Cusp, D. Reidel Publ. Co., Dordrecht, Holland (in press).

    Google Scholar 

  • Potemra, T. A., Zanetti, L. J., Bythrow, P. F., Lui, A. T. Y., and Iijima, T.: 1984, ‘By-Dependent Convection Patterns During Northward Interplanetary Magnetic Field’, J. Geophys. Res. 89, 9753.

    Article  ADS  Google Scholar 

  • Potemra, T. A., Zanetti, L. J., Erlandson, R. E., Bythrow, P. F., Gustafsson, G., Acuna, M. H., and Lundin, R.: 1987, ‘Observations of Large-Scale Birkeland Currents with Viking’, Geophys. Res. Letters 14, 419.

    Article  ADS  Google Scholar 

  • Primdahl, F. and Marklund, G.: 1986, ‘Birkeland Currents Correlated with Direct-Current Electric Fields Observed During the CENTAUR Black Brant X Rocket Experiment’, Can. J. Phys. 64, 1412.

    Article  ADS  Google Scholar 

  • Reiff, P. H. and Burch, J. L.: 1985, ‘IMF By-Dependent Plasma Flow and Birkeland Currents in the Dayside Magnetosphere. 2. A Global Model for Northward and Southward IMF’, J. Geophys. Res. 90, 1595.

    Article  ADS  Google Scholar 

  • Retterer, J. M., Chang, T., and Jasperse, J. R.: 1983, ‘Ion Acceleration in the Supraauroral Region: A Monte Carlo Model’, Geophys. Res. Letters 10, 583.

    Article  ADS  Google Scholar 

  • Retterer, J. M., Chang, T., and Jasperse, J. R.: 1986, ‘Ion Acceleration by Lower Hybrid Waves in the Supraauroral Region’, J. Geophys. Res. 91, 1609.

    Article  ADS  Google Scholar 

  • Retterer, J. M., Chang, T., Crew, G. B., Jasperse, J. R., and Winningham, J. D.: 1987, ‘Monte Carlo Modeling of Ionospheric Oxygen Acceleration by Cyclotron Resonance with Broad-Band Electromagnetic Turbulence’, Phys. Rev. Letters 59, 148.

    Article  ADS  Google Scholar 

  • Robert, P., Gendrin, R., Perraut, S., and Roux, A.: 1984, ‘GEOS-2 Identification of Rapidly Moving Current Structures in the Equatorial Outer Magnetosphere During Substorms’, J. Geophys. Res. 89, 819.

    Article  ADS  Google Scholar 

  • Rothwell, P. L., Silevitch, M. B., and Block, L. P.: 1984, ‘A Model for the Propagation of the Westward Traveling Surge’, J. Geophys. Res. 89, 8941.

    Article  ADS  Google Scholar 

  • Rowland, H. L. and Palmadesso, P. J.: 1983, ‘Anomalous Resistivity Due to Low-Frequency Turbulence’, J. Geophys. Res. 88, 7997.

    Article  ADS  Google Scholar 

  • Serizawa, Y. and Sato, T.: 1984, ‘Generation of Large-Scale Potential Difference by Currentless Plasma Jets Along the Mirror Field’, Geophys. Res. Letters 11, 595.

    Article  ADS  Google Scholar 

  • Sharp, R. D. and Shelley, E. G.: 1981, ‘Magnetosphere-Ionosphere Coupling Through the Auroral Acceleration Region’, reprint Conf. Proc. No. 295, The Physical Basis of the Ionosphere in the Solar- Terrestrial System, AGARD, Advisory Group for Aerospace Research and Development, North Atlantic Treaty Organization, Neuilly-sur-Seine, France.

    Google Scholar 

  • Sharp, R. D., Lennartsson, W., and Strangeway, R. J.: 1985, ‘The Ionospheric Contribution to the Plasma Environment in the Near-Earth Space’, Radio Sci. 20, 456.

    Article  ADS  Google Scholar 

  • Shawhan, S. D.: 1976, ‘To Sheath-Accelerated Electrons and Ions’, J. Geophys. Res. 81, 3373.

    Article  ADS  Google Scholar 

  • Shawhan, S. D., Fälthammar, C.–G., and Block, L. P.: 1978, ‘On the Nature of Large Auroral Zone Electric Fields at One REAltitude’, J. Geophys. Res. 83, 1049.

    Article  ADS  Google Scholar 

  • Shelley, E. G.: 1986, ‘Magnetospheric Energetic Ions from the Earth’s Ionosphere’, Adv. Space Res. 6, 121.

    Article  ADS  Google Scholar 

  • Shelley, E. G., Johnson, R. G., and Sharp, R. D.: 1972, ‘Satellite Observations of Energetic Heavy Ions During a Geomagnetic Storm’, J. Geophys. Res. 77, 6104.

    Article  ADS  Google Scholar 

  • Shelley, E. G., Peterson, W. K., Ghielmetti, A. G., and Geiss, J.: 1982, ‘The Polar Ionosphere as a Source of Energetic Magnetospheric Plasma’, Geophys. Res. Letters 9, 941.

    Article  ADS  Google Scholar 

  • Shelley, E. G., Sharp, R. D., and Johnson, R. G.: 1976, ‘Satellite Observations of an Ionospheric Acceleration Mechanism’, Geophys. Res. Letters 3, 654.

    Article  ADS  Google Scholar 

  • Singh, N. and Schunk, R. W.: 1984, ‘Energization of Ions in the Auroral Plasma by Broadband Waves: Generation of Ion Conies’, J. Geophys. Res. 89, 5538.

    Article  ADS  Google Scholar 

  • Singh, N., Schunk, R. W., and Sojka, J. J.: 1981, ‘Energization of Ionospheric Ions by Electrostatic Hydrogen Cyclotron Waves’, Geophys. Res. Letters 8, 1249.

    Article  ADS  Google Scholar 

  • Singh, N., Schunk, R. W., and Sojka, J. J.: 1983, ‘Preferential Perpendicular Acceleration of Heavy Ionospheric Ions by Interactions with Electrostatic Hydrogen-Cyclotron Waves’, J. Geophys. Res. 88, 4055.

    Article  ADS  Google Scholar 

  • Smits, D. P., Hughes, W. J., Cattell, C. A., and Russell, C. T.: 1986, ‘Observations of Field-Aligned Currents, Waves, and Electric Fields at Substorm Onset’, J. Geophys. Res. 91, 121.

    Article  ADS  Google Scholar 

  • Stasiewicz, K.: 1984, ‘On the Origin of the Auroral Inverted V Electron Spectra’, Planetary Space Sci. 32, 379.

    Article  ADS  Google Scholar 

  • Stasiewicz, K.: 1985a, ‘The Influence of a Turbulent Region on the Flux of Auroral Electrons’, ‘Generation of Magnetic-Field Aligned Currents, Parallel Electric Fields, and Inverted-V Structures by Plasma Pressure Inhomogeneities in the Magnetosphere’, Planetary Space Sci. 33, 591.

    Article  ADS  Google Scholar 

  • Stasiewicz, K.: 1985b, ‘On the Formation of Auroral Arcs’, Planetary Space Sci. 33, 1037.

    Article  ADS  Google Scholar 

  • Stenbaek-Nielsen, H. C., Hallinan, T. J., Wescott, E. M., and Foeppl, H.: 1984, ‘Acceleration of Barium Ions Near 8000 km Above an Aurora’, J. Geophys. Res. 89, 10788.

    Article  ADS  Google Scholar 

  • Stern, D. P.: 1983, ‘The Origins of Birkeland Currents’, Geophys. Space Phys. 21, 125.

    Article  ADS  Google Scholar 

  • Stern, D. P.: 1984, ‘Energetics of the Magnetosphere’, Space Sci. Rev. 39, 193.

    Article  ADS  Google Scholar 

  • Stokholm, M., Amata, E., Balsiger, H., Candidi, M., Orsini, S., and Pedersen, A.: 1985, ‘Low Energy (<130) Oxygen Ions at the Geosynchronous Orbit During the CD AW 6 Event of March 22, 1979’, Geophys. Res. 90, 1253.

    Article  ADS  Google Scholar 

  • Stüdemann, W., Gloeckler, G., Wilken, B., Ipavich, F. M., Kremser, G., Hamilton, D. C., and Hovestadt, D.: 1986, in Y. Kamide and J. A. Slavin (eds.), Ion Composition of the Bulk Ring Current during a Magnetic Storm: Observations with the CHEM-Instrument on AMPTE/CCE, Solar Wind-Magnetosphere Coupling, Terra Scientific Publ. Co., Tokyo.

    Google Scholar 

  • Sugiura, M.: 1984, ‘A Fundamental Magnetosphere-Ionosphere Coupling Mode Involving Field-Aligned Currents as Deduced from DE-2 Observations’, Geophys. Res. Letters 11, 877.

    Article  ADS  Google Scholar 

  • Temerin, M.: 1986, ‘Evidence for a Large Bulk Ion Conic Heating Region’, Geophys. Res. Letters 13, 1059.

    Article  ADS  Google Scholar 

  • Temerin, M., Cerny, K., Lotko, W., and Mozer, F. S.: 1982, ‘Observations of Double Layers and Solitary Waves in the Auroral Plasma’, Phys. Rev. Letters 48, 1175.

    Article  ADS  Google Scholar 

  • Ungstrup, E., Klumpar, D. M., and Heikkila, W. J.: 1979, ‘Heating of Ions to Superthermal Energies in the Topside Ionosphere by Electrostatic Ion-Cyclotron Waves’, J. Geophys. Res. 84, 4289.

    Article  ADS  Google Scholar 

  • Vasyliunas, V. M.: 1972, ‘Interrelationship of Magnetospheric Processes’, in B. M. Mormac (ed.), Earth’s Magnetospheric Processes, D. Reidel Publ. Co., Dordrecht, Holland, p. 29.

    Chapter  Google Scholar 

  • Vasyliunas, V. M.: 1984, ‘Fundamentals of Current Description, Magnetospheric Currents’, in T. Potemra (ed.), AGU Geophysical Monograph 28, Proc. Chapman Conf. on Magnetosphere Current Systems, Irvington, Virginia, April 5–8, 1983, p. 63.

    Google Scholar 

  • Waite, J. H., Nagai, T., Johnson, J. F. E., Chappell, C. R., Burch, J. L., Killeen, T. L., Hays, P. B., Carignan, G. R., Peterson, W. K., and Shelley, E. G.: 1985, ‘Escape of Suprathermal O+Ions in the Polar Cap’, J. Geophys. Res. 90, 1619.

    Article  ADS  Google Scholar 

  • Whalen, B. A. and Daly, P. W.: 1979, ‘Do Field-Aligned Auroral Particle Distributions Imply Acceleration by Quasi-Static Parallel Electric Fields?’, J. Geophys. Res. 84, 4175.

    Article  ADS  Google Scholar 

  • Whalen, B. A. and Miarmid, I. B.: 1972, ‘Observations of Magnetic-Field Aligned Auroral Electron Precipitation’, J. Geophys. Res. 77, 191.

    Article  ADS  Google Scholar 

  • Whipple, E. C., 1977, ‘The Signature of Parallel Electric Fields in a Collisionless Plasma’, J. Geophys. Res. 82, 1525.

    Article  ADS  Google Scholar 

  • Wilhelm, K.: 1980, ‘Natural and Artificially Injected Electron Fluxes Near Discrete Auroral Arcs’, ESA SP-152, 407.

    Google Scholar 

  • Wilhelm, K., Bernstein, W., Kellogg, P. J., and Whalen, B. A.: 1984, ‘Acceleration of Electrons in Strong Beam-Plasma Interactions’, Geophys. Res. Letters 11, 1176.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Bernstein, W., Kellogg, P. J., and Whalen, B. A.: 1985, ‘Fast Magnetospheric Echoes of Energetic Electron Beams’, J. Geophys. Res. 90, 491.

    Article  ADS  Google Scholar 

  • Winningham, J. D. and Gurgiolo, C.: 1982, ‘DE-2 Photoelectron Measurements Consistent with a Large-Scale Parallel Electric Field over the Polar Cap’, Geophys. Res. Letters 9, 977.

    Article  ADS  Google Scholar 

  • Yamamoto, T. and Kan, J. R.: 1985, ‘Effects of Potential Distribution Along Field Lines on Field-Aligned Current Density’, J. Geophys. Res. 90, 11083.

    Article  ADS  Google Scholar 

  • Yamamoto, T. and Kan, J. R.: 1986a, ‘Interruption of Field-Aligned Current Due to Electrostatic Turbulence’, J. Geophys. Res. 91, 7119.

    Article  ADS  Google Scholar 

  • Yamamoto, T. and Kan, J. R.: 1986b, ‘Relationship between Field-Aligned Current Density and Potential Difference of Current-Driven Double Layer’, J. Geophys. Res. 91, 12113.

    Article  ADS  Google Scholar 

  • Yang, W. H. and Kan, J. R.: 1983, ‘Generation of Conic Ions by Auroral Electric Fields’, J. Geophys. Res. 88, 465.

    Article  ADS  Google Scholar 

  • Yau, A. W., Shelley, E. G., Peterson, W. K., and Lenchyshyn, L.: 1985, ‘Energetic Auroral and Polar Ion Outflow at DE-1 Altitudes: Magnitude, Composition, Magnetic Activity Dependence, and Long-Term Variations’, J. Geophys. Res. 90, 8417.

    Article  ADS  Google Scholar 

  • Yau, A. W., Whalen, B. A., Peterson, W. K., and Shelley, E. G.: 1984, ‘Distribution of Upflowing Ionospheric Ions in the High-Altitude Polar Cap and Auroral Ionosphere’, J. Geophys. Res. 89, 5507.

    Article  ADS  Google Scholar 

  • Zanetti, L. J. and Potemra, T. A.: 1986, ‘The Relationship of Birkeland and Ionospheric Current Systems to the Interplanetary Magnetic Field’, in Y. Kamide and J. A. Slavin (eds.), Solar Wind-Magnetosphere Coupling, D. Reidel Publ. Co., Dordrecht, p. 547.

    Chapter  Google Scholar 

  • Zanetti, L. J., Potemra, T. A., Iijima, T., Baumjohann, W., and Bythrow, P. F.: 1984, ‘Ionospheric and Birkeland Current Distributions for Northward Interplanetary Magnetic Field: Inferred Polar Convection’, J. Geophys. Res. 89, 7453.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fälthammar, CG. (1988). Magnetosphere-Ionosphere Interactions — Near-Earth Manifestations of the Plasma Universe. In: Fälthammar, CG., Arrhenius, G., De, B.R., Herlofson, N., Mendis, D.A., Kopal, Z. (eds) Plasma and the Universe. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3021-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3021-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7858-0

  • Online ISBN: 978-94-009-3021-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics