Skip to main content

Production and Decay of Radiocarbon and its Modulation by Geomagnetic Field-Solar Activity Changes with Possible Implications for Global Environment

  • Chapter
Book cover Secular Solar and Geomagnetic Variations in the Last 10,000 Years

Part of the book series: NATO ASI Series ((ASIC,volume 236))

Abstract

Seven estimates of the global 14C production rate at solar minimum (1965, S=15) and solar maximum (1969, .S-106) were published between 1970 and 1980. Six of these are is good agreement at 2.47±0.19 (a, S=15) and 2.02±0.13 (σ, S=106). The seventh estimate is 22% lower. Nevertheless, modelers of 14C fluctuation have used this lowest production rate because it is consistent with their estimates of the 14C inventory. Standard models for the global 14C cycle do not include sedimentary reservoirs because the flux to sediments is considered to be negligibly small. However, 14C accumulates in sediments over its 8270-year mean Iife and constitutes a significant part of the total pre-anthropogenic 14C inventory (24%) and should be included in 14C fluctuation models. Addition of sedimentary sink reservoirs yields global 14C decay rates that are consistent with the six higher estimates of global 14C production rates. The carbon flux to sediments is being anthropogenically enhanced and may account for a significant part of the “mising” carbon in the 20th century global carbon cycle.

The atmosphere responds to and integrates changes in the global rate of 14C production with a lag time of only a few years. Unfortunately other proxy indicators of the geophysical environment, such as climate and geomagnetism, are strongly biased by regional varia- tions. Considering this limitation, the archaeomagnetic record is consistent with long-term modulation of 14C production by changes in the Earth’s magnetic field yielding the envelope of the Δ14C temporal fluctuation curve. The envelope in turn is modulated by solar activity with a strong 200-year quasi-cyclic “wiggle” component. The most intense Maunder minimum-type “wiggles” occur every 2100 to 2400 years. These wiggles, unlike the wiggles of lesser intensity, appear to be independent of the strength of the Earth’s dipole moment. Results of the NASA Solar Maximum Mission indicate a direct linear relationship between the total solar irradiance and sunspot number with a decrease in luminosity of 0.1% over the five-year period from solar maximum to solar minimum. This is consistent with the previous- ly suggested correlation of climate with Δ14C and sunspots. However, confirmation requires a longer record of total solar irradiance and integration of proxy climate records on a reasonable approximation to global coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baes, C.F., Jr, Björkstrom, A., and Mulholland, P.J., 1985, in Trabalka, J.R., ed, ‘Atmospheric carbon dioxide and the global carbon cycle’, US Dept. of Energy Report DOE/ER-0239, 81.

    Google Scholar 

  • Bacastow, R., and Keeling, C.D., 1973, in Woodwell, G.M. and Pecan, E.V., eds., ‘Carbon and the biosphere’, Upton, New York, USAEC Conf. 720510, 86.

    Google Scholar 

  • Berner, R.A., 1982, Am. J. Science 282, 451.

    Article  ADS  Google Scholar 

  • Berner, W., Oeschger, H., and Stauffer, B., 1980, Radiocarbon, 22(2), 227.

    Google Scholar 

  • Broecker, W.S., Takahashi, T., Simpson, H.J., and Peng, T.H., 1979, Science, 206, 409.

    Article  ADS  Google Scholar 

  • Bruns, M., Rhein, M., Linick, T.W., and Suess, H.E., 1983, in Mook, W.G. and Waterbolk, H.T., eds., ‘14C and archaeology’, PACT, Strasbourg, 8, 511.

    Google Scholar 

  • Castagnoli, G., and Lal, D., 1980, Radiocarbon, 22(2), 113.

    Google Scholar 

  • Damon, P.E., 1968, Meteorol Monographs, 8, 106.

    Google Scholar 

  • Damon, P.E., 1970, in Olsson, I.U., ed., ‘Radiocarbon variations and absolute chronology’, Proc XII Nobel Symp: New York, Wiley, 571.

    Google Scholar 

  • Damon, P.E., and Kunen, S.M., 1976, Science, 193, 447.

    Article  ADS  Google Scholar 

  • Damon, P.E., and Linick, T.W., 1986, Radiocarbon, 28(2A), 266.

    Google Scholar 

  • Damon, P.E., Lerman, J.C., and Long, A., 1978, Ann. Rev. Earth Planet Sci., 6, 457.

    Article  ADS  Google Scholar 

  • Damon, P.E., Sternberg, R.S., and Radnell, C.J., 1982, Radiocarbon, 25(2), 249.

    Google Scholar 

  • de Vries, H., 1958, K. Ned. Akad. Wet.Proc. Ser. B, 61, 94.

    Google Scholar 

  • de Vries, H., 1959, in Abelson, P.H., ed., ‘Researches in geochemistry’, New York, Wiley, 169.

    Google Scholar 

  • Eddy, J.A., 1976a, Science, 192, 1189.

    Article  ADS  Google Scholar 

  • Eddy, J.A., 1976b, in Williams , D.J., ed. ‘Physics of solar planetary environments’, 2, Washington, D.C., Amer Geophys Union, 958.

    Google Scholar 

  • Eddy, J.A., 1977, Climatic Change, 1, 173.

    Article  Google Scholar 

  • Elsasser, W.E., Ney, E.P., and Winckler, J.R., 1956, Nature 178, 1226.

    Article  ADS  Google Scholar 

  • Hay, W.H., 1985, in Sundquist, E.T. and Broecker, W.S., eds, ‘The carbon cycle and atmospheric CO2: Natural variation Archean to Present’, Amer. Geophys. Union Monograph 32, 573.

    Google Scholar 

  • Houtermans, J.C., 1971, ‘Geophysical interpretations of Bristlecone Pine radiocarbon measurements using a method of Fourier analysis for unequally-spaced data’, Ph.D. Dissertation, Univ. Bern, Switzerland.

    Google Scholar 

  • Houtermans, J.C., Suess, H.E., and Oeschger, H., 1973, Jour. Geophys. Research, 78, 1897.

    Article  ADS  Google Scholar 

  • Kemp, S., 1979, in Bolin, B., Degens, E.T., Kemp, S., and Ketner, P., eds. ‘The global carbon cycle, Scope 13’, John Wiley and Sons, New York, 317.

    Google Scholar 

  • Klein, J., Lerman, J.C., Damon, P.E., and Linick, T., 1980, Radiocarbon, 22(3), 950.

    Google Scholar 

  • Korff, S.A., and Mendell, R.B., 1980, Radiocarbon, 22(2), 159.

    Google Scholar 

  • Light, E.S., Merker, M., Verschell, H.J., Mendell, R.B., and Korff, S.A., 1973, Jour. Geophys. Research., 78(16), 2741.

    Article  ADS  Google Scholar 

  • Lin, R., 1977, in White, O.R., ed., fThe solar output and its variation’, Colorado Associated Univ. Press, 39.

    Google Scholar 

  • Lingenfelter, R.E., and Ramaty, R., 1970, in Olsson, I.U., ed., ‘Radiocarbon variations and absolute chronology’, Nobel Symposium, 12th Proc., New York, John Wiley and Sons, 513.

    Google Scholar 

  • McElhinny, M.W., and Senanyake, W.E., 1982, Jour. Geomag. Geoelect., 34, 39.

    Article  ADS  Google Scholar 

  • Merker, M., 1970, ‘Solar cycle modulation of fast neutrons in the atmosphere’, Ph.D. Dissertation, New York Univ., New York, University Microfilms, Ann Arbor, Michigan, 1971.

    Google Scholar 

  • Merrill, R.T., and McElhinny, M.W., 1983, ‘The Earth’s magnetic field, its history, origin and planetary perspective’, Academic Press, London.

    Google Scholar 

  • O’Brien, K.J., 1979, Jour. Geophys. Research, 84, 423.

    Article  ADS  Google Scholar 

  • Oeschger, H., Siegenthaler, U., Schotterer, U., and Gugelmann, A., 1975, Tellus, 27, 168.

    Article  ADS  Google Scholar 

  • Olson, J.S., Garrels, R.M., Berner, R.A., Armentano, T.V., Dyer, M.I., and Yaalon, D.H., 1985, in Trabalka, J.R., ed., ‘Atmospheric carbon dioxide and the global carbon cycle’, US Dept. of Energy Report DOE/ER-0239.

    Google Scholar 

  • Olsson, I.U., 1970, ed., ‘Radiocarbon variations and absolute chronology’, Proc. XII Nobel Symp: New York, Wiley.

    Google Scholar 

  • Pearson, G.W., and Stuiver, M., 1986, Radiocarbon, (Calibration Issue), 28(28), 839.

    Google Scholar 

  • Pearson, G.W., Pilcher, J.R., Baillie, M.G.L., Corbett, D.M., and Qua, F., 1986, Radiocarbon, (Calibration Issue), 28(28), 911.

    Google Scholar 

  • Peterson, B.J., and Mellilo, J.M., 1985, Tellus, 37B, 117.

    Article  ADS  Google Scholar 

  • Povinec, P., 1977, Acta Physica Comeniana, 18, 139.

    Google Scholar 

  • Siegenthaler, U., 1985, in Fontes, J.C., and Fritz, P., eds. ‘Handbook of environmental isotope geochemistry’, v.3, Elsevier, Amsterdam (in press).

    Google Scholar 

  • Siegenthaler, U., Heimann, M., and Oeschger, H., 1980, Radiocarbon, 22(2), 177.

    Google Scholar 

  • Sonett, C.P., 1984, Rev. Geophysics Space Physics, 22(3), 239.

    Article  ADS  Google Scholar 

  • Sternberg, R.S., and Damon, P.E., 1979, in Berger, R., and Suess, H.E., eds., ‘Radiocarbon dating’, Berkeley, Univ. California Press, 691.

    Google Scholar 

  • Stuiver, M., 1961, Jour. Geophys Research, 66, 273.

    Article  ADS  Google Scholar 

  • Stuiver, M., 1965, Science, 149, 533.

    Article  ADS  Google Scholar 

  • Stuiver, M., and Pearson, G.W., 1986, Radiocarbon (Calibration Issue), 28(28), 805.

    Google Scholar 

  • Stuiver, M., and Quay, P.D., 1980, Science, 207(4426), 11.

    Article  ADS  Google Scholar 

  • Suess, H.E., 1980, Radiocarbon, 22(2), 200.

    Google Scholar 

  • Trabalka, J.R., Edmonds, J.A., Reilly, J.M., Gardner, R.H., and Voorhees, L.D., 1985, in Trabalka, J.R., ed. ‘Atmospheric carbon dioxide and the global carbon cycle’, US Dept. of Energy Report DOE/ER-0239.

    Google Scholar 

  • Walsh, J.J., 1984, Bioscience, 34, 499.

    Article  Google Scholar 

  • Willson, R.C., Hudson, H.S., Frohlich, C., and Brusa, R.W., 1986, Science, 234, 1114.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Damon, P.E. (1988). Production and Decay of Radiocarbon and its Modulation by Geomagnetic Field-Solar Activity Changes with Possible Implications for Global Environment. In: Stephenson, F.R., Wolfendale, A.W. (eds) Secular Solar and Geomagnetic Variations in the Last 10,000 Years. NATO ASI Series, vol 236. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3011-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3011-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7853-5

  • Online ISBN: 978-94-009-3011-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics