Skip to main content

Cosmic Metabolism: The Origin of Macromolecules

  • Conference paper
Book cover Bioastronomy — The Next Steps

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 144))

Abstract

Three possible routes for the synthesis of macromolecules--geochemical, biochemical, astrochemical--are shown to be directed by water, hydrogen cyanide and silicates, respectively.

The origin of volatiles and refractories.

The hydride hypothesis for the origin of molecules assumes that hydrides are readily formed within our galaxy because of the dominating presence of hydrogen compared with all other bonding elements. One of these hydrides, water, has a unique role because it reacts readily with metallic hydrides to give refractory materials such as silicates, or with ionic hydrides to yield salts such as sodium hydroxide, but does not react with covalent hydrides such as the volatile compounds dihydrogen, methane, ammonia, hydrogen sulfide, and phosphine. The existence of this watershed producing reduced compounds together with those that are oxidized has profound implications for the origin of stars, planets, and life.

The origin of proteins and nucleic acids.

The cyanide model for the origin of proteins in the reducing environment of primitive Earth maintains that polyamidines formed by base-catalyzed polymerization of hydrogen cyanide in the atmosphere are readily converted by water in the oceans to polypeptides. In the absence of water--on land--these polyamidines could have been the original condensing agents directing the synthesis of nucleosides and nucleotides from available sugars, phosphates, and nitrogen bases. Most significant would have been the parallel synthesis of polypeptides and polynucleotides arising from the dehydrating action of polyamidines on nucleotides. On our dynamic planet this polypeptide-polynucleotide symbiosis mediated by polyamidines may have set the pattern for the evolution of protein-nucleic acid systems controlled by enzymes, the mode characteristic of life today.

The origin of stars and planets.

According to the planetary connection, disintegration of planets and other satellites -- moons, asteroids, comets -- during ‘the red giant phase of stellar evolution yields circumstellar dust and molecules that become interstellar following ejection by planetary nebula activity, nova cataclysms or supernova catastrophes. Further production of dust and molecules - circumstellar, interstellar and protostellar - is promoted by the dust acting as aggregating agent, coordinating matrix and radiation shield. As well as being possible abodes of life, planets play an essential role in bringing about stellar evolution in spiral galaxies.

Taken together, these preferred pathways suggest that in spiral galaxies planets are natural companions of stars, and that on Earth-like planets life is a universal phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urey, H. C.: 1952, Proc. Natl. Acad. Sci. U.S. 38, 351.

    Article  ADS  Google Scholar 

  2. Miller, S. L.: 1953, Science 10, 528.

    Article  ADS  Google Scholar 

  3. Palm, C. and Calvin, M.: 1962, J. Am. Chem. Soc. 84, 2115.

    Article  Google Scholar 

  4. Sagan, C. and Khare, B. N.: 1971, Nature 232, 577.

    Article  ADS  Google Scholar 

  5. Wald, G.: 1962, in Kasha, M. and Pullman, B. (eds.) Horizons in Biochemistry, Academic Press, New York, N.Y., p. 127.

    Google Scholar 

  6. Wald, G.: 1964, Proc. Natl. Acad. Sci. U.S. 52, 595.

    Article  ADS  Google Scholar 

  7. Matthews, C. N.: 1980, Abstracts, 6th Intl. Conf. Origins of Life, Jerusalem, Israel, p. 29.

    Google Scholar 

  8. Maay, K. M.: 1966, Hydrogen Compounds of the Metallic Elements, E. and F. N. Spon Ltd., London, England.

    Google Scholar 

  9. Jones, B. W.: 1984, The Solar System, Pergamon Press, London, England.

    Google Scholar 

  10. Duley, W. W. and Williams, D. A.: 1984, Interstellar Chemistry, Academic Press, New York, N.Y.

    Google Scholar 

  11. Townes, C. H.: 1980, in Andrew, B. H., Interstellar Molecules, Reidel, Dordrecht, Holland, p. 644.

    Google Scholar 

  12. Miller, S. L.: 1984, in Nicolis, G. (ed.), Aspects of Chemical Evolution, Wiley, New York, p. 85.

    Google Scholar 

  13. Matthews, C. N. and Moser, R. E.: 1967, Nature 215, 1230.

    Article  ADS  Google Scholar 

  14. Matthews, C. N. and Moser, R. E.: 1966, Proc. Natl. Acad. Sci. U.S. 56, 1087.

    Article  ADS  Google Scholar 

  15. Matthews, C. N.: 1975, Origins of Life 6, 155.

    Article  ADS  Google Scholar 

  16. Matthews, C. N.: 1984, Proc. Roy. Inst. Gt. Britain 55, 199.

    Google Scholar 

  17. Matthews, C. N., Nelson, J., Varma, P. and Minard, R. D.: 1977, Science 198, 622.

    Article  ADS  Google Scholar 

  18. Matthews, C. N., Ludicky, R. A., Schaefer, J., Stejskal, E. 0. and May, R. A.: 1984, Origins of Life 14, 243.

    Article  ADS  Google Scholar 

  19. Matthews, C. N.: 1985, in Papagiannis, M. 0. (ed.) The Search for Extraterrestrial Life: Recent Developments, Reidel, Dordrecht, Holland, p. 151.

    Chapter  Google Scholar 

  20. Sagdeev, R. Z., Blamont, J., Galeev, A. A., Moroz, V. I., Shapiro, V. D., Shevchenko, V. I. and Szego, K.: 1986, Nature 321, 259.

    Article  ADS  Google Scholar 

  21. Reinhard, R.: 1986, Nature 321, 313.

    Article  ADS  Google Scholar 

  22. Matthews, C. N. and Ludicky, R. A.: 1986, Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA S.P. 250, p. 273.

    Google Scholar 

  23. Matthews, C. N. and Ludicky, R. A.: 1987, Polymer Preprints 28, No. 1, 104.

    Google Scholar 

  24. Schloerb, F. P., Kinzel, W. M., Swade, D. A. and Irvine, W. M.: 1986, Proc. 20th ESLAB Symposium on the Exploration of Hal ley’s Comet, ESA SP-250, p. 577.

    Google Scholar 

  25. A’Hearn, M. F., Hoban, S., Birch, P. V., Bowers, C., Martin, R. and Klinglesmith, D. A.: 1986, Nature 324, 649.

    Article  ADS  Google Scholar 

  26. Clark, B. C., Mason, L. W. and Kissel, J.: 1986, Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, p. 353.

    Google Scholar 

  27. Cruikshank, D. P.: 1986, Advances in Space Research, in press.

    Google Scholar 

  28. Cruikshank, D. P., Hartmann, W. K. and Tholen, D. J.: 1985, Nature 315, 122.

    Article  ADS  Google Scholar 

  29. Hartmann, W. K., Cruikshank, D. P. and Degewij, J.: 1982, Icarus 52, 377.

    Article  ADS  Google Scholar 

  30. Kvenvolden, K. A., Lawless, J. G. and Folsome, C. E.: 1973, Scientific American 227, June, 38.

    Google Scholar 

  31. Cronin, J. R.: 1976, Origins of Life 7, 337, 343.

    Article  ADS  Google Scholar 

  32. Matthews, C. N., Nelson, J. E. and Minard, R. D: 1980, Abstracts, 6th Intl. Conf. Origins of Life, Jerusalem, Israel, p. 100.

    Google Scholar 

  33. Owen, T.: 1982, Scientific American 246, February, 98.

    Article  ADS  Google Scholar 

  34. Matthews, C. N.: 1982, Origins of Life 12, 281.

    Article  ADS  Google Scholar 

  35. Ponnamperuma, C.: 1983, (ed.) Cosmochemistry and the Origin of Life, Reidel, Dordrecht, Holland, Ch. 1.

    Google Scholar 

  36. Oro, J. and Lazcano-Araujo, A.: 1980, in Vennesland, B., Conn, E. E., Knowles, C. J., Westley, J. and Wissing, F. (eds.) Cyanide in Biology Academic Press, New York, N.Y. p. 517.

    Google Scholar 

  37. Ferris, J. P. and Hagan, W. J.: 1984, Tetrahedron 40, 1093.

    Article  Google Scholar 

  38. Matthews, C. N.: 1986, Origins of Life 16, 500.

    Article  Google Scholar 

  39. Kliss, R. M. and Matthews, C. N.: 1962, Proc. Natl. Acad. Sci. U.S. 48, 1300.

    Article  ADS  Google Scholar 

  40. Dyson, F.: 1985, Origins of Life, Cambridge University Press, Cambridge, England.

    Google Scholar 

  41. Knacke, R. F.: 1978, in Gehrels, T. (ed.), Protostars and Planets, University of Arizona Press, Tucson, Arizona, p. 112.

    Google Scholar 

  42. Zuckerman, B. A.: 1980, Ann. Rev. Astron. Astrophys. 18, 263.

    Article  ADS  Google Scholar 

  43. Matthews, C. N.: 1983, Abstracts, 7th Intl. Conf. Origins of Life, Mainz, FRG, p. Al-10.

    Google Scholar 

  44. Motz, L.: 1975, The Universe, Its Beginning and End, Scribners, New York, N.Y. p. 283.

    Google Scholar 

  45. Field, G. B.: 1978, in Terzian, Y. (ed.) Planetary Nebulae, Observations and Theory, Reidel, Dordrecht, p. 367.

    Google Scholar 

  46. Aitken, D. K., Roche, P. F. and Spenser, P. M.: 1979, Astrophys. J. 233, 925.

    Article  ADS  Google Scholar 

  47. Sun Kwok: 1981, in Iben, I. and Renzini, A. (eds.) Physical Processes in Red Giants, Reidel, Dordrecht, p. 421.

    Chapter  Google Scholar 

  48. Abt, H. A.: 1978, in Gehrels, T. (ed.), Protostars and Planets, University of Arizona Press, Tucson, Arizona, p. 338.

    Google Scholar 

  49. Harrington, R. S. and Harrington, B. M.: 1978, Mercury, 34.

    Google Scholar 

  50. Sagan, C. and Khare, B. N.: 1979, Nature 277, 102.

    Article  ADS  Google Scholar 

  51. Watson, W. D.: 1978, in Gehrels, T. (ed.) Protostars and Planets, University of Arizona Press, Tucson, Arizona, p. 77.

    Google Scholar 

  52. Shklovskii, I. S.: 1978, Stars: Their Birth, Life and Death, W. H. Freeman, San Francisco, CA, Ch. 16.

    Google Scholar 

  53. Silk, J.: 1980, The Big Bang, W. H. Freeman, San Francisco CA.

    Google Scholar 

  54. Reddish, V. C.: 1978, Stellar Formation, Pergamon, Oxford, England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this paper

Cite this paper

Matthews, C.N. (1988). Cosmic Metabolism: The Origin of Macromolecules. In: Marx, G. (eds) Bioastronomy — The Next Steps. Astrophysics and Space Science Library, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2959-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2959-3_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7830-6

  • Online ISBN: 978-94-009-2959-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics