Skip to main content

Modelling Dispersion of Air Pollutants Emitted by Power Stations Using Fluctuations of Wind Direction

  • Chapter
  • 125 Accesses

Abstract

To calculate the effects at ground level of emissions of air pollutants from large power stations, a dispersion model has been developed by which hourly concentrations can be calculated. The model is based on the Gaussian dispersion model of which the parameters σy and σz are calculated from the fluctuations of the horizontal wind direction. To do so, the fast stability-dependent fluctuations are separated from the slower stability-independent ones. The fast fluctuations are characterized by the standard deviation σv of the lateral wind velocity and by the Eulerian time-scale Te. The values of σv and Te are used to calculate σz. Parameter σy is also calculated from σv and Te, by which a contribution of the stability-independent fluctuations is taken into account.

To test the model, two sets of dispersion experiments were carried out; SF6 measurements near two non-buoyant sources and lidar observations of a smoke plume. From these experiments values of the hourly-mean concentration and of σy and σz were derived, which are compared with values calculated by applying the wind fluctuation model and three other dispersion models. It is concluded that σv and Te can easily be obtained by measuring wind direction and wind speed, and that dispersion may well be modelled through direct conversion of these parameters into σy and σz without the use of a stability parameter.

Joint Laboratories and Other Services of the Dutch Electricity Supply Undertakings

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AGTERBERG, R., NIEUWSTADT, F.T.M., DUUREN, H. VAN, HASSELTON, A.J. and KRIJT, G.D., 1983. ‘Dispersion experiments with sulphur hexafluoride for the 213 m high meteorological mast at Cabauw in the Netherlands’. De Bilt, KNMI; Arnhem, N.V. KEMA.

    Google Scholar 

  • BENARIE, M.M., 1987. “The limits of air pollution modelling”. In: Atmospheric Environment 21, pp. 1–5.

    Article  Google Scholar 

  • BRIGGS, G.A., 1971. ‘Some recent analyses of plume rise observation’. In: Proceedings 2nd Intern. Clean Air Congress, 6–11 December, 1970, New York, Academic Press, pp. 1029–1032.

    Google Scholar 

  • BRIGGS, G.A., 1975. ‘Plume rise predictions’. In: Lectures on air pollution and environmental impact analysis, Boston MA, Am. Meteor. Soc., pp. 59–111.

    Google Scholar 

  • BRIGGS, G.A., 1984. ‘Plume rise and buoyancy effects’. In: Atmospheric Science and Power Production, Office of Scientific and Technical Information, US Dept. of Energy, NTIS DE 84005177 (DOE/TIC-27601), pp. 327–366.

    Google Scholar 

  • CARSON, D.J., 1986. ‘A report on the symposium on uncertainty in modelling atmospheric dispersion’. In: Atmospheric Environment 20, pp. 1047–1049.

    Article  Google Scholar 

  • DRAXLER, R.R., 1987. ‘Accuracy of various diffusion and stability schemes over Washington D.C.’. In: Atmospheric Environment 21, pp. 491–499.

    Article  Google Scholar 

  • DUUREN, H. VAN, ERBRINK, J.J., SCHOLTEN, R.D.A., 1988. ‘Dispersion experiments with sulphur hexafluoride and lidar observations. A data-base for testing dispersion models’. (In preparation) Arnhem, N.V. Kema.

    Google Scholar 

  • DUUREN, H. VAN, KRIJT, G.D., ELSHOUT, A.J., 1975. ‘Zwavelhexafluoride als tracer voor de verspreiding van luchtverontreinigende componenten vanuit puntbronnen’. In: Elektrotechniek 53, pp. 135–143.

    Google Scholar 

  • DUUREN, H. VAN, NIEUWSTADT, F.T.M., 1980. ‘Dispersion experiments from the 213 m high meteorological mast at Cabauw in the Netherlands’. In: Atmospheric Pollution 1980, Proceedings of the 14th International Colloquium (Paris, May, 5–8, 1980), M.M. Benarie (ed.), Studies in Environmental Science, Volume 8, Amsterdam, Elsevier Scientific Publishing Company, pp. 77–90.

    Chapter  Google Scholar 

  • EGMOND, N.D. VAN, KESSEBOOM, H., 1983a. ‘Mesoscale air pollution dispersion models — I. Eulerian grid model’. In: Atmospheric Environment 17, pp. 257–265.

    Article  Google Scholar 

  • EGMOND N.D. VAN, KESSEBOOM, H., 1983b. ‘Mesoscale air pollution dispersion models — II. Lagrangian puff model and comparison with Eulerian grid model’. In: Atmospheric Environment 17, pp. 267–274.

    Article  Google Scholar 

  • ELSHOUT, A.J., DUUREN, H. VAN, 1967. ‘SO2-Konzentrationen in der Umgebung von Kraftwerken’. In: Mitteilungen der VGB 107, pp. 119–126.

    Google Scholar 

  • ERBRINK, J.J., 1988. ‘A dispersion model, based on wind fluctuations, for calculating short-term ground-level concentrations’. (To be published) Arnhem, N.V. Kema.

    Google Scholar 

  • GOLDER, D., 1972. ‘Relations among stability parameters in the surface layer’. In: Boundary-Layer Meteor. 3, pp. 47–58.

    Article  Google Scholar 

  • HOLTSLAG, A.A.M., ULDEN, A.P. VAN, 1983. ‘A simple scheme for daytime estimates of the surface fluxes from routine weather data’. In: J. Climate Appl. Meteor. 22, pp. 517–529.

    Article  Google Scholar 

  • IRWIN, J.S., 1983. ‘Estimating plume dispersion. A comparison of several schemes’. In: J. Climate Appl. Meteor. 22, pp. 92–114.

    Article  Google Scholar 

  • MANINS, P.C., 1979. ‘Partial penetration of an elevated inversion layer by chimney plumes’. In: Atmospheric Environment 13, pp. 733–741.

    Article  Google Scholar 

  • MANINS, P.C., 1984. ‘Chimney plume penetration of the sea-breeze inversion’. In: Atmospheric Environment 15, pp. 2339–2344.

    Google Scholar 

  • MONNA, W.A.A., VLIET, J.G. VAN DER, 1987. ‘Facilities for research and weather observations on the 213 m tower at Cabauw and at remote locations’. De Bilt, KNMI, Scientific reports WR — No. 87-5

    Google Scholar 

  • MOORE, G.E., MEI-HAO LIU, LU-HUAI SHI, 1985. ‘Estimation of interface time scales from a 100 m meteorological tower at a plains site’. In: Boundary-Layer Meteor. 31, pp. 349–368.

    Article  Google Scholar 

  • PASQUILL, F., 1974. Atmospheric diffusion, Chichester, John Wiley and Sons.

    Google Scholar 

  • SINGER, I.A., SMITH, M.E., 1966. ‘Atmospheric dispersion at Brookhaven National Laboratory’. In: Int. J. Air Water Poll. 10, pp. 125–135.

    Google Scholar 

  • TAYLOR, G.I., 1921. ‘Diffusion by continuous movements’. In: Proc. London Meth. Soc. 20, pp. 196–202.

    Article  Google Scholar 

  • TNO, 1976. Modellen voor de berekening van de verspreiding van luchtverontreiniging inclusief aanbevelingen voor de parameters in het lange-termijnmodel. Werkgroep Verspreiding Luchtverontreiniging, ’s-Gravenhage, Staatsuitgeverij.

    Google Scholar 

  • TNO, 1981. Frequentieverdelingen van luchtverontreinigingsconcentraties. Een aanbeveling voor een rekenmethode. Werkgroep Verspreiding Luchtverontreiniging, ’s-Gravenhage, Staatsuitgeverij.

    Google Scholar 

  • TNO, 1984. Parameters in het lange-termijnmodel verspreiding luchtverontreiniging. Commissie Onderzoek Luchtverontreiniging TNO, Delft.

    Google Scholar 

  • ULDEN, A.P. VAN, HOLTSLAG, A.A.M., 1985. ‘Estimation of atmospheric boundary layer parameters for diffusion applications’. In: J. Climate Appl. Meteor. 24, pp. 1196–1207.

    Article  Google Scholar 

  • VENKATRAM, A., 1984. ‘The uncertainty in estimating dispersion in the convective boundary layer’. In: Atmospheric Environment 18, pp. 307–310.

    Article  Google Scholar 

  • WEIL, J.C. and BROWER, R.P., 1984. ‘An updated gaussian plume model for tall stacks’. In: J. Air Poll. Contr. Ass. 34, pp. 815–827.

    Google Scholar 

  • WILCZAK, J.M., PHILLIPS, M.S., 1986. ‘An indirect estimation of convective boundary layer structure for use in air pollution dispersion models’. In: J. Climate Appl. Meteor. 25, pp. 1609–1624.

    Article  Google Scholar 

  • WILLMOT, C.J., 1982. ‘Some comments on the evaluation of model performance’. In: Bull. Am. Meteor. Soc. 63, pp. 1309–1313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

van Duuren, H., Erbrink, J.J., Kema, N.V. (1988). Modelling Dispersion of Air Pollutants Emitted by Power Stations Using Fluctuations of Wind Direction. In: Grefen, K., Löbel, J. (eds) Environmental Meteorology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2939-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2939-5_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7823-8

  • Online ISBN: 978-94-009-2939-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics