Skip to main content

Semiconductor Lasers with Optical Feedback

  • Chapter

Part of the book series: Advances in Optoelectronics (ADOP) ((ADOP,volume 3))

Abstract

It is often beneficial to operate laser diodes with optical feedback, as provided, for example, by an external mirror according to Fig. 9.1. This external mirror may serve, for example, for the selection of a distinct longitudinal mode of Fabry—Perot-type lasers in order to get a better side-mode suppression [1–6]. If the longitudinal mode selection is provided by other means, e.g. a grating reflector or by using a DFB-laser diode, the external feedback may be used for tuning the laser emission frequency [7] or for a considerable linewidth narrowing [8–18]. An external cavity may also be useful for reducing the laser chirp, as has already been discussed in Chapter 5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. R. Preston, K. C. Woollard, and K. H. Cameron: “External cavity controlled single longitudinal mode laser transmitter module”; Electron. Lett., Vol. 17, pp. 931–933, 26th Nov. 1981.

    Article  Google Scholar 

  2. M. Osinski and M. J. Adams: “Optimal design of monomode transmitter module”; Proc. 9th Europ. Conf. on Opt. Comm., pp. 47–50, Geneva, Switzerland, Oct. 1983.

    Google Scholar 

  3. J. P. von der Ziel and R. M. Mikulyak: “Single-mode operation of 1.3 μm InGaAsP/ InP buried crescent lasers using a short external optical cavity”; IEEE J. Quant. Electron., Vol. QE-20, pp. 223–229, March 1984.

    Article  Google Scholar 

  4. C. Lin, C. A. Burrus jr., and L. A. Coldren: “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers”; J. Lightwave Techn., Vol. LT-2, pp. 544–549, Aug. 1984.

    Google Scholar 

  5. L. A. Coldren and T. L. Koch: “External-cavity laser design”; J. Lightwave Techn., Vol. LT-2, pp. 1045–1051, Dec. 1984.

    Article  Google Scholar 

  6. G. Wenke, R. Gross, P. Meissner, and E. Patzak: “Characteristics of a compact three cavity laser configuration”; J. Lightwave Techn., Vol. LT-5, pp. 608–615, April 1987.

    Article  Google Scholar 

  7. R. S. Vodhanel and J.-S. Ko: “Reflection-induced frequency shifts in single-mode laser diodes coupled to optical fibres”; Electron. Lett., Vol. 20, pp. 973–974, 8th Nov. 1984.

    Article  Google Scholar 

  8. C. Voumard: “External-cavity-controlled 32 MHz narrow-band cw GaAlAs-diode lasers”; Opt. Lett., Vol. 1, pp. 61–63, Aug. 1977.

    Article  Google Scholar 

  9. R. Wyatt and W. J. Devlin: “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range”; Electron. Lett., Vol. 19, pp. 110–112, 3rd Feb. 1983.

    Article  Google Scholar 

  10. K.-Y. Liou and C. A. Burrus: “Spectral linewidth of a GRECC laser with added external cavity”; Electron. Lett., Vol. 21, pp. 353–354, 11th Apr. 1985.

    Article  Google Scholar 

  11. T. P. Lee, S. G. Menocal, and H. Matsumura: “Characteristics of linewidth narrowing of a 1.5 μm DFB laser with a short GRIN-rod external coupled cavity”; Electron. Lett., Vol. 21, pp. 655–656, 18th July 1985.

    Article  Google Scholar 

  12. R. Wyatt: “Spectral linewidth of external cavity semiconductor lasers with strong frequency-selective feedback”; Electron. Lett., Vol. 21, pp. 658–659, 18th July 1985.

    Article  Google Scholar 

  13. E. Brinkmeyer, W. Brennecke, M. Zürn, and R. Ulrich: “Fibre Bragg reflector for mode selection and line-narrowing of injection lasers”; Electron. Lett., Vol. 22, pp. 134–135, 30th Jan. 1986.

    Article  Google Scholar 

  14. A. R. Chraplyvy, K.-Y. Liou, R. W. Tkach, G. Eisenstein, Y. U. Jhee, T. L. Koch, P. J. Anthony, and U. K. Chakrabarti: “Simple narrow-linewidth 1.5 μm InGaAsP DFB external-cavity laser”; Electron. Lett., Vol. 22, pp. 88–90, 16th Jan. 1986.

    Article  Google Scholar 

  15. G. Wenke, E. Patzak, and P. Meissner: “Reliable laboratory transmitter with sub-megahertz linewidth”; Electron. Lett., Vol. 22, pp. 206–207, 13th Feb. 1986.

    Article  Google Scholar 

  16. F. Favre, D. le Guen, J. C. Simon, and B. Landousies: “External-cavity semiconductor laser with 15 nm continuous tuning range”; Electron. Lett., Vol. 22, pp. 795–796, 17th July 1986.

    Article  Google Scholar 

  17. C. A. Park, C. J. Rowe, J. Buus, J. Hankey, N. Weston, and B. T. Debney: “External cavity lasers for coherent systems”; Proc. OFC/IOOC’87, paper TuG3, Reno, Nevada, USA, 1987.

    Google Scholar 

  18. K.-Y. Liou, R. T. Ku, T. M. Shen, and P. J. Anthony: “Oscillation frequency tuning characteristics of fiber-extended-cavity distributed-feedback lasers”; Appl. Phys. Lett., Vol. 50, pp. 380–382, 16th Feb. 1987.

    Article  Google Scholar 

  19. T. Fujita, J. Ohya, K. Matsuda, M. Ishino, H. Sato, and H. Serizawa: “Narrow spectral linewidth characteristics of monolithic integrated-passive-cavity InGaAsP/InP semiconductor lasers”; Electron. Lett., Vol. 21, pp. 374–376, 25th Apr. 1985.

    Article  Google Scholar 

  20. S. Murata, S. Yamazaki, I. Mito, and K. Kobayashi: “Spectral characteristics for 1.3 μm monolithic external cavity DFB lasers”; Electron. Lett., Vol. 22, pp. 1197–1198, 23rd Oct. 1986.

    Article  Google Scholar 

  21. N. K. Dutta, T. Cella, A. B. Piccirilli, and R. L. Brown: “Integrated external cavity laser”; Appl. Phys. Lett., Vol. 49, pp. 1227–1229, 10th Nov. 1986.

    Article  Google Scholar 

  22. T. P. Lee, S. G. Menocal, S. Sakano, V. Valster, and S. Tsuji: “Linewidth and FM-characteristics of a distributed feedback laser monolithically integrated with a tunable external cavity”; Electron. Lett., Vol. 23, pp. 153–154,12th Feb. 1987.

    Article  Google Scholar 

  23. D. Lenstra, B. H. Verbeek, and A. J. den Boef: “Coherence collapse in single-mode semiconductor lasers due to optical feedback”; IEEE J. Quant. Electron., Vol. QE-21, pp. 674–679, June 1985.

    Article  Google Scholar 

  24. R. P. Salathé: “Diode lasers coupled to external resonators”; Appl. Phys., Vol. 20, pp. 1–18,1979.

    Article  Google Scholar 

  25. T. Kanada and K. Nawata: “Injection laser characteristics due to reflected optical power”; IEEE J. Quant. Electron., Vol. QE-15, pp. 559–565, July 1979.

    Article  Google Scholar 

  26. L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weiler, and R. O. Miles: “Spectral characteristics of semiconductor lasers with optical feedback”; IEEE J. Quant. Electron., Vol. QE-18, pp. 555–564, Apr. 1982.

    Article  Google Scholar 

  27. S. Saito, O. Nilsson, and Y. Yamamoto: “Oscillation center frequency tuning, quantum FM noise, and direct frequency modulation characteristics in external grating loaded semiconductor lasers”; IEEE J. Quant. Electron., Vol. QE-18, pp. 961–970, June 1982.

    Article  Google Scholar 

  28. R. Lang and K. Kobayashi: “External optical feedback effects on semiconductor injection laser properties”; IEEE J. Quant. Electron., Vol. QE-16, pp. 347–355, March 1980.

    Article  Google Scholar 

  29. P. Spano, S. Piazolla, and M. Tamburrini: “Theory of noise in semiconductor lasers in the presence of optical feedback”; IEEE J. Quant. Electron., Vol. QE-20, pp. 350–357, Apr. 1984.

    Article  Google Scholar 

  30. G. P. Agrawal: “Line narrowing in a single-mode injection laser due to external optical feedback”; IEEE J. Quant. Electron, Vol. QE-20, pp. 468–471, May 1984.

    Article  Google Scholar 

  31. B. Tromborg, J. H. Osmundsen, and H. Olesen: “Stability analysis for a semiconductor laser in an external cavity”; IEEE J. Quant. Electron., Vol. QE-20, pp. 1023–1032, Sept. 1984.

    Article  Google Scholar 

  32. F. Favre and D. le Guen: “Spectral properties of a semiconductor laser coupled to a single mode fiber resonator”; IEEE J. Quant. Electron., Vol. QE-21, pp. 1937–1946, Dec. 1985.

    Article  Google Scholar 

  33. F. Favre: “Theoretical analysis of external optical feedback on DFB semiconductor lasers”; IEEE J. Quant. Electron., Vol. QE-23, pp. 81–88, Jan. 1987.

    Article  Google Scholar 

  34. N. K. Dutta, N. A. Nelson, and K.-Y. Liou: “Effect of external optical feedback on spectral properties of external cavity semiconductor lasers”; Electron. Lett., Vol. 20, pp. 588–589, 5th July 1984.

    Article  Google Scholar 

  35. J. W. M. Biesterbos, A. J. den Boef, W. Linders, and G. A. Acket: “Low-frequency mode-hopping optical noise in AlGaAs channeled substrate lasers induced by optical feedback”; IEEE J. Quant. Electron, Vol. QE-19, pp. 986–990, June 1983.

    Article  Google Scholar 

  36. A. Arimoto, M. Ojima, N. Chinone, A. Oishi, T. Gotoh, and N. Ohnuki: “Optimum conditions for the high frequency noise reduction method in optical videodisc players”; Appl. Opt., Vol. 25, pp. 1398–1403, 1st May 1986.

    Article  Google Scholar 

  37. M. Ojima, A. Arimoto, N. Chinone, T. Gotoh, and K. Aiki: “Diode laser noise at video frequencies in optical videodisc players”; Appl. Opt., Vol. 25, pp. 1404–1410, 1st May 1986.

    Article  Google Scholar 

  38. D. Kato: “Suppression of light feedback from an optical fiber into a diode laser”; Opt. Comm., Vol. 26, pp. 335–338, Sept. 1978.

    Article  Google Scholar 

  39. W. Bludau and R. Rossberg: “Characterization of laser-to-fiber coupling techniques by their optical feedback”; Appl.Opt., Vol.21, pp. 1933–1939, 1st June 1982.

    Article  Google Scholar 

  40. G. Wenke and Y. Zhu: “Comparison of efficiency and feedback characteristics of techniques for coupling semiconductor lasers to single-mode fiber”; Appl. Opt., Vol. 22, pp. 3837–3844, 1st Dec. 1983.

    Article  Google Scholar 

  41. K. Kawano, T. Mukai, and O. Mitomi: “Optical output power fluctuation due to reflected lightwaves in laser diode modules”; J. Lightwave Techn., Vol. LT-4, pp. 1669–1677, Nov. 1986.

    Article  Google Scholar 

  42. R. S. Vodhanel and J.-S. Ko: “Reflection induced frequency shifts in single-mode laser diodes coupled to optical fibres”; Electron. Lett., Vol. 20, pp. 973–974, 8th Nov. 1984.

    Article  Google Scholar 

  43. E. Patzak, H. Olesen, A. Sugimura, S. Saito, and T. Mukai: “Spectral linewidth reduction in semiconductor lasers by an external cavity with weak optical feedback”; Electron. Lett., Vol. 19, pp. 938–940, 27th Oct. 1983.

    Article  Google Scholar 

  44. E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen: “Semiconductor laser linewidth in optical feedback configurations”; Electron. Lett., Vol. 19, pp. 1026–1027, 24th Nov. 1983.

    Article  Google Scholar 

  45. Y. C. Chen: “Phase noise characteristics of single mode semiconductor lasers with optical feedback”; Appi. Phys. Lett., Vol. 44, pp. 10–12, 1st Jan. 1984.

    Article  Google Scholar 

  46. K. Kikuchi and T. Okoshi: “Simple formula giving spectrum narrowing ratio of semiconductor-laser output obtained by optical feedback”; Electron. Lett., Vol. 18, pp. 10–12, 7th Jan. 1982.

    Article  Google Scholar 

  47. M. W. Fleming and A. Mooradian: “Spectral characteristics of external-cavity controlled semiconductor lasers”; IEEE J. Quant. Electron., Vol. QE-17, pp. 44–59, Jan. 1981.

    Article  Google Scholar 

  48. Y. K. Jhee, K.-J. Liou, C. A. Burrus, and K. L. Hall: “Linewidth reduction of cleaved-coupled-cavity lasers by optical feedback from a single-mode polarisation-preserving fibre external cavity”; Electron. Lett., Vol. 21, pp. 1146–1148, 21th Nov. 1985.

    Article  Google Scholar 

  49. C.-Y. Kuo and J. P. van der Ziel: “Linewidth reduction of 1.5 μm operating loaded external cavity semiconductor laser by geometric reconfiguration”; Appl. Phys. Lett., Vol. 48, pp. 885–887, 7th April 1986.

    Article  Google Scholar 

  50. K.-Y. Liou, Y. K. Jhee, G. Eisenstein, R. S. Tucker, R. T. Ku, T. M. Shen, U. K. Chakrabarti, and P. J. Anthony: “Linewidth characteristics of fiber-extended-cavity distributed-feedback lasers”; Appl. Phys. Lett., Vol. 48, pp. 1039–1041, 21st April 1986.

    Article  Google Scholar 

  51. C.A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Benmion: “Single-mode behaviour of a multimode 1.55 μm laser with a fibre grating external cavity”; Electron. Lett., Vol. 22, pp. 1132–1133, 9th Oct. 1986.

    Article  Google Scholar 

  52. L. Goldberg, H. F. Taylor, J. F. Weiler: “Feedback effects in a laser diode due to Rayleigh backscattering from an optical fibre”; Electron. Lett., Vol. 18, pp. 353–354, 29th April 1982.

    Article  Google Scholar 

  53. R. E. Epworth, D. F. Smith, and S. Wright: “A practical 1.3 μm semiconductor light source with significantly better short term coherence than a gas laser”; Proc. of the 10th Europ. Conf. on Opt. Comm., pp. 132–133, Stuttgart, West Germany, Sept. 1984.

    Google Scholar 

  54. J. Mark, E. Bodtker, and B. Tromberg: “Measurement of Rayleigh backscatter-induced linewidth reduction”; Electron. Lett., Vol. 21, pp. 1008–1009, 24th Oct. 1985.

    Article  Google Scholar 

  55. J. Mark, E. Bødtker, and B. Tromberg: “Statistical characteristics of a laser diode exposed to Rayleigh backscatter from a single-mode fibre”; Electron. Lett., Vol. 21, pp. 1010–1011, 24th Oct. 1985.

    Article  Google Scholar 

  56. K. Kikuchi and T. P. Lee: “Spectral stability analysis of weakly coupled external-cavity semiconductor lasers”; Proc. OFC/IOOC’87, paper TuC3, Reno, Nevada, USA, Jan. 1987.

    Google Scholar 

  57. N. Schunk and K. Petermann: “Minimum bitrate of DPSK transmission for semiconductor lasers with a long external cavity and strong linewidth reduction”; J. Lightwave Techn., Vol. LT-5, pp. 1309–1314, Sept. 1987.

    Article  Google Scholar 

  58. I. Mito and M. Shikada: “External waveguide loaded DFB-LDs for coherent system applications”; Proc. Europ. Conf. on Opt. Comm. 1986, pp. 67–72, Barcelona, Spain, Sept. 1986.

    Google Scholar 

  59. H. Olesen, J. H. Osmundsen, and B. Tromberg: “Nonlinear dynamics and spectral behaviour for an external cavity laser”; IEEE J. Quant. Electron., Vol. QE-22, pp. 762–773, June 1986.

    Article  Google Scholar 

  60. K. Kobayashi: “Improvements in direct pulse code modulation of semiconductor lasers by optical feedback”; Trans. IECE of Japan, Vol. E59, pp. 8–14, Dec. 1976.

    Google Scholar 

  61. N. Chinone, K. Aiki, and R. Ito: “Stabilization of semiconductor laser outputs by a mirror close to a laser facet”; Appl. Phys. Lett., Vol. 33, pp. 990–992, 15th Dec. 1978.

    Article  Google Scholar 

  62. T. Fujita, S. Ishizuka, K. Fujito, H. Serizawa, and H. Sato: “Intensity noise suppression and modulation characteristics of a laser diode coupled to an external cavity”; IEEE J. Quant. Electron., Vol. QE-20, pp. 492–499, May 1984.

    Article  Google Scholar 

  63. Ch. Risch, C. Voumard, F. K. Reinhart, and R. Salamé: “External-cavity-induced nonlinearities in the light versus current characteristics of (Ga, Al)As continuous-wave diode lasers”; IEEE J. Quant. Electron., Vol. QE-13, pp. 692–696, Aug. 1977.

    Article  Google Scholar 

  64. N. A. Olsson and W. T. Tsang: “Transient effects in external cavity semiconductor lasers”; IEEE J. Quant. Electron., Vol. QE-19, pp. 1479–1481, Oct. 1983.

    Article  Google Scholar 

  65. H. I. Mandelberg, R. D. Grober, and P. A. McGrath: “Frequency and amplitude modulation in extended cavity diode lasers”; Proceedings OFC/IOOC’87, paper WC4, Reno, Nevada, USA, Jan. 1987.

    Google Scholar 

  66. R. F. Broom, E. Mohn, C. Risch, and R. Salathé: “Microwave self-modulation of a diode laser coupled to an external cavity”; IEEE J. Quant. Electron., Vol. QE-6, pp. 328–334, June 1970.

    Article  Google Scholar 

  67. T. Morikawa, Y. Mitsuhashi, J. Shimada, and Y. Kojima: “Return-beam-induced oscillations in self-coupled semiconductor lasers”; Electron. Lett., Vol. 12, pp. 435–436, 19th Aug. 1976.

    Article  Google Scholar 

  68. I. Ikushima and M. Maeda: “Self-coupled phenomena of semiconductor lasers caused by an optical fiber”; IEEE J. Quant. Electron., Vol. QE-14, pp. 331–332, May 1978.

    Article  Google Scholar 

  69. I. Ikushima and M. Maeda: “Lasing spectra of semiconductor lasers coupled to an optical fiber”; IEEE J. Quant. Electron., Vol. QE-15, pp. 844–845, Sept. 1979.

    Article  Google Scholar 

  70. O. Hirota and Y. Suematsu: “Noise properties of injection lasers due to reflected waves”; IEEE J. Quant. Electron, Vol. QE-15, pp. 142–149,March 1979.

    Article  Google Scholar 

  71. R. O. Miles, A. Dandridge, A. B. Tveten, H. F. Taylor, and T. G. Giallorenzi: “Feedback-induced line broadening in cw channel-substrate planar laser diodes”; Appl. Phys. Lett., Vol. 37, pp. 990–992, 1st Dec. 1980.

    Article  Google Scholar 

  72. O. Hirota, Y. Suematsu, and K.-S. Kwok: “Properties of intensity noises of laser diodes due to reflected waves from single-mode optical fibers and its reduction”; IEEE J. Quant. Electron., Vol. QE-17, pp. 1014–1020, June 1981.

    Article  Google Scholar 

  73. H. Sato, T. Fujita, and K. Fujito: “Intensity fluctuation in semiconductor lasers coupled to external cavity”; IEEE J. Quant. Electron., Vol. QE-21, pp. 46–51, Jan. 1985.

    Article  Google Scholar 

  74. Y. Hirose, A. Ona, and T. Fukuda: “Subharmonic modulation distortions in semiconductor lasers with optical feedback”; Electron. Lett., Vol. 21, pp. 685–686, 1st Aug. 1985.

    Article  Google Scholar 

  75. J. Mink and B. H. Verbeek: “Asymmetric noise and output power in semiconductor lasers with optical feedback near threshold”; Appl. Phys. Lett., Vol. 48, pp. 745–747, 24th March 1986.

    Article  Google Scholar 

  76. G. P. Agrawal and T. M. Shen: “Effect of fiber-far-end reflections on the bit-error rate in optical communication systems with single-frequency semiconductor lasers”; J. Lightwave Techn., Vol. LT-4, pp. 58–63, Jan. 1986.

    Article  Google Scholar 

  77. H. Temkin, N. Anders Olsson, J. H. Abeles, R. A. Logan, and M. B. Panish: “Reflection noise in index-guided InGaAsP lasers”; IEEE J. Quant. Electron., Vol. QE-22, pp. 286–293, Feb. 1986.

    Article  Google Scholar 

  78. R. W. Tkach and A. R. Chraplyvy: “Regimes of feedback effects in 1.5 μm distributed feedback lasers”; J. Lightwave Techn., Vol. LT-4, pp. 1655–1661, Nov. 1986.

    Article  Google Scholar 

  79. R. W. Tkach and A. R. Chraplyvy: “Line broadening and mode splitting due to weak feedback in single-frequency 1.5 μm lasers”; Electron. Lett., Vol. 21, pp. 1081–1085, 7th Nov. 1985.

    Article  Google Scholar 

  80. V. J. Mazurczyk: “Sensitivity of single-mode buried heterostructure lasers to reflected power at 274 Mbit/s”; Electron. Lett., Vol. 17, pp. 143–144, 5th Feb. 1981.

    Article  Google Scholar 

  81. S.-Y. Sasaki, H. Nakano, and M. Maeda: “Bit-error-rate characteristics with optical feedback in a 1.5 μm DFB semiconductor laser”; Proc. 12th Europ. Conf. on Opt. Comm., pp. 483–486, Barcelona, Spain, Sept. 1986.

    Google Scholar 

  82. M. Shikada, S. Takano, S. Fujita, I. Mito, and K. Minemura: “Evaluation of power penalties caused by feedback noise of distributed feedback laser diodes”; Proc. OFC/IOOC’87, paper TuB4, Reno, Nevada, USA, Jan. 1987.

    Google Scholar 

  83. K. Kobayashi and M. Seki: “Microoptic grating multiplexers and optical isolators for fiber-optic communications”; IEEE J. Quant. Electron., Vol. QE-16, pp. 11–22, Jan. 1980.

    Article  Google Scholar 

  84. N. Schunk and K. Petermann: “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external fedback”; IEEE J. Quant. Electron., Vol. QE-24, July 1988.

    Google Scholar 

  85. K.-I. Sato: “Intensity noise of semiconductor laser diodes in fiber optic analog video transmission”; IEEE J. Quant. Electron., Vol. QE-19, pp. 1380–1391, Sept. 1983.

    Article  Google Scholar 

  86. K. Stubkjaer and M. B. Small: “Feedback-induced noise in index-guided semiconductor lasers and its reduction by modulation”; Electron. Lett., Vol. 19, pp. 388–390, 12th May 1983.

    Article  Google Scholar 

  87. K. E. Stubkjaer and M. B. Small: “Noise properties of semiconductor lasers due to optical feedback”; IEEE J. Quant. Electron., Vol. QE-20, pp. 472–478, May 1984.

    Article  Google Scholar 

  88. M. Fujiwara, K. Kubota, and R. Lang: “Low-frequency intensity fluctuation in laser diodes with external optical feedback”; Appl. Phys. Lett., Vol. 38, pp. 217–220, 15th Feb. 1981.

    Article  Google Scholar 

  89. R. Ries and F. Sporleder: “Low frequency instabilities of laser diodes with optical feedback”; Proc. 8th Europ. Conf. on Opt. Comm., pp. 285–290, Cannes, France, Sept. 1982.

    Google Scholar 

  90. T. Mukai and K. Otsuka: “New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity”; Phys. Rev. Lett., Vol. 55, pp. 1711–1714, 21st Oct. 1985.

    Article  Google Scholar 

  91. C. Risch and C. Voumard: “Self-pulsation in the output intensity and spectrum of GaAs-AlGaAs cw diode lasers coupled to a frequency-selective external optical cavity”; J. Appl. Phys., Vol. 48, pp. 2083–2085, May 1977.

    Article  Google Scholar 

  92. C. H. Henry and R. F. Kazarinov: “Instability of semiconductor lasers due to optical feedback from distant reflectors”; IEEE J. Quant. Electron., Vol. QE-22, pp. 294–301, Feb. 1986.

    Article  Google Scholar 

  93. Y. Cho and T. Umeda: “Chaos in laser oscillations with delayed feedback”; J. Opt. Soc., Vol. 1B, pp. 497–498, 1984.

    Google Scholar 

  94. P. W. Milonni, J. A. Ackerhalt, and M.-L. Shih: “Optical chaos”; Optics News, Vol. 13, pp. 34–37, March 1987.

    Article  Google Scholar 

  95. E. Brinkmeyer: “Analysis of the backscattering method for single-mode optical fibers”; J. Opt. Soc. Am., Vol. 70, pp. 1010–1012, Aug. 1980.

    Article  Google Scholar 

  96. M. Nakazawa: “Rayleigh backscattering theory for single-mode optical fibers”; J. Opt. Soc. Am., Vol. 73, pp. 1175–1180, Sept. 1983.

    Article  Google Scholar 

  97. A. H. Hartog and M. P. Gold: “On the theory of backscattering in single-mode optical fibers”; J. Lightwave Techn., Vol. LT-2, pp. 76–82, April 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Petermann, K. (1988). Semiconductor Lasers with Optical Feedback. In: Laser Diode Modulation and Noise. Advances in Optoelectronics (ADOP), vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2907-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2907-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1204-8

  • Online ISBN: 978-94-009-2907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics