Skip to main content

Noise in Interferometers Including Modal Noise and Distortions

  • Chapter
Book cover Laser Diode Modulation and Noise

Part of the book series: Advances in Optoelectronics (ADOP) ((ADOP,volume 3))

Abstract

If laser light is fed through an interferometer, as sketched in Fig. 8.1, the power transmission from the input to the output depends on the actual optical frequency v. If a laser exhibits phase or frequency noise as expressed by the spectral linewidth Δv the frequency noise may be converted to intensity noise after the interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Armstrong: “Theory of interferometric analysis of laser phase noise”; J. Opt. Soc. Am., Vol. 56, pp. 1024–1031, August 1966.

    Article  Google Scholar 

  2. Y. Yamamoto, T. Mukai, and S. Saito: “Quantum phase noise and linewidth of a semiconductor laser”; Electron. Lett., Vol. 17, pp. 327–329, 30th April 1981.

    Article  Google Scholar 

  3. K. Petermann and E. Weidel: “Semiconductor laser noise in an interferometer system”; IEEE J. Quant. Electron., Vol. QE-17, pp. 1251–1256, July 1981.

    Article  Google Scholar 

  4. A. Dandridge and H. F. Taylor: “Correlation of low-frequency intensity and frequency fluctuations in GaAJAs lasers”; IEEE J. Quant. Electron., Vol. QE-18, pp. 1738–1750, Oct. 1982.

    Article  Google Scholar 

  5. B. Daino, P. Spano, M. Tamburrini, and S. Piazzolla: “Phase noise and spectral line shape in semiconductor lasers”; IEEE J. Quant. Electron., Vol. QE-19, pp. 266–270, March 1983.

    Article  Google Scholar 

  6. K. Kikuchi and T. Okoshi: “Measurement of FM noise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor”: IEEE J. Quant. Electron., Vol. QE-21, pp. 1814–1818, Nov. 1985.

    Article  Google Scholar 

  7. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath: “Linewidth determination from self-heterodyne measurements with subcoherence delay times”; IEEE J. Quant. Electron., Vol. QE-22, pp. 2070–2074, Nov. 1986.

    Article  Google Scholar 

  8. R. E. Epworth: “The phenomena of modal noise in analogue and digital optical fibre systems”; Proc. 4th Europ. Conf. on Opt. Commun., Genova, Italy, pp. 492–501, Sept. 1978.

    Google Scholar 

  9. L. Mandel: “Fluctuations of photon beams: the distribution of the photo-electrons”; Proc. Phys. Soc., Vol. 74, pp. 233–243, 1959.

    Article  Google Scholar 

  10. B. Moslehi: “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time”; J. Lightwave Techn., Vol. LT-4, pp. 1334–1351, Sept. 1986.

    Article  Google Scholar 

  11. A. R. Reisinger, C. D. David, Jr., K. L. Lealey, and A. Yariv: “Coherence of a room temperature cw GaAs/GaAJAs injection laser”; IEEE J. Quant. Electron., Vol. QE-15, pp. 1382–1387, Dec. 1979.

    Article  Google Scholar 

  12. R. E. Epworth: “The measurement of static and dynamic coherence phenomena using a Michelson interferometer”; Proc. of Opt. Commun. Conf., Amsterdamm, The Netherlands, paper 4.2, Sept. 1979.

    Google Scholar 

  13. P. B. Gallion and G. Debarge: “Quantum phase noise and field correlation in single frequency semiconductor laser systems”; IEEE J. Quant. Electron., Vol. QE-20, pp. 343–349, April 1984.

    Article  Google Scholar 

  14. R. W. Tkach and A. R. Chraplyvy: “Phase noise and linewidth in an InGaAsP DFB laser”; J. Lightwave Techn., Vol. LT-4, pp. 1711–1716, Nov. 1986.

    Article  Google Scholar 

  15. T. Okoshi, K. Kikuchi, and A. Nakagama: “Novel method for high resolution measurement of laser output spectrum”; Electron. Lett., Vol. 16, pp. 630–631, 31st July 1980.

    Article  Google Scholar 

  16. A. Dandridge: “Zero path-length difference in fiber-optic interferometers”; J. Lightwave Techn., Vol. LT-1, pp. 514–516, Sept. 1983.

    Article  Google Scholar 

  17. T.-P. Lee, C. A. Burrus, jr., and B. I. Miller: “A stripe-geometry double-heterostruc-ture amplified-spontaneous-emission (superluminescent) diode”; IEEE J. Quant. Electron., Vol. QE-9, pp. 820–828, Aug. 1973.

    Google Scholar 

  18. G. Arnold, F.-J. Berlec, H. Gottsmann, and W. Pfister: “Emission and coupling properties of 1.3 μm V-groove edge-emitting LED’s”; J. Opt. Comm., Vol. 6, pp. 127–131, Dec. 1985.

    Article  Google Scholar 

  19. L. M. Johnson and C. H. Cox: “Serrodyne optical frequency translation with high sideband suppression”, J. Lightwave Technology, Vol. LT-6, pp. 109–112, Jan. 1988.

    Article  Google Scholar 

  20. B. Moslehi: “Noise power spectra of optical two-beam interferometers induced by the laser phase noise”; J. Lightwave Techn., Vol.LT-4, pp. 1704–1710, Nov. 1986.

    Article  Google Scholar 

  21. J. Mark, R. Bødtker, and B. Tromberg: “Measurement of Rayleigh backscatter-induced linewidth reduction”; Electron. Lett., Vol. 21, pp. 1008–1009, 24th Oct. 1985.

    Article  Google Scholar 

  22. J. C. Dainty, ed.: “Laser speckle and related phenomena”; Springer, Heidelberg, 1975.

    Google Scholar 

  23. B. Daino, G. de Marchis, and S. Piazzolla: “Analysis and Measurement of modal noise in an optical fibre”; Electron. Lett., Vol. 15, pp. 755–756, 8th Nov. 1979.

    Article  Google Scholar 

  24. B. Daino, G. de Marchis, and S. Piazzolla: “Speckle and modal noise in optical fibres, theory and experiment”; Opt. Acta., Vol. 27, pp. 1151 -1159, August 1980.

    Article  Google Scholar 

  25. B. Daino, G. de Marchis, and S. Piazzolla: “Modal noise in the presence of mode correlation”; Opt. Comm., Vol. 38, pp. 340–344, 1st Sept. 1981.

    Article  Google Scholar 

  26. K. O. Hill, Y. Tremblay, and B. S. Kawasaki: “Modal noise in multimode fibre links: theory and experiment”; Opt. Lett., Vol. 5, pp. 270–272, June 1980.

    Article  Google Scholar 

  27. Y. Tremblay, B. S. Kawasaki, and K. O. Hill: “Modal noise in optical fibres: open and closed speckle pattern regimes”; Appl. Opt., Vol. 20, pp. 1652–1655, 1st May 1981.

    Article  Google Scholar 

  28. J. W. Goodman and E. G. Rawson: “Statistics of modal noise in fibres: a case of constrained speckle”; Opt. Lett., Vol. 6, pp. 324–326, July 1981.

    Article  Google Scholar 

  29. W. Freude and G. Grau: “Estimation of modal noise for arbitrary connectors, fibres and sources”; Arch. Elektr. Übertr., Vol. 36, pp. 91–93, Feb. 1982.

    Google Scholar 

  30. K. Petermann: “Nonlinear distortions and noise in optical communication systems due to fiber connectors”; IEEE J. Quant. Electron., Vol. QE-16, pp. 761–770, July 1980.

    Article  Google Scholar 

  31. K. Petermann and G. Arnold: “Noise and distortion characteristics of semiconductor lasers in optical fiber communication systems”; IEEE J. Quant. Electron., Vol. QE-18, pp. 543–555, April 1982.

    Article  Google Scholar 

  32. H. G. Unger: “Planar optical waveguides and fibres”; Clarendon Press, Oxford, 1977.

    Google Scholar 

  33. J. Saijonmaa and S. J. Halme: “Reduction of modal noise by using reduced spot excitation”; Appl. Opt., Vol. 20, pp. 4302–4306, 15th Dec. 1981.

    Article  Google Scholar 

  34. T. H. Wood: “Actual modal power distributions in multimode optical fibers and their effects on modal noise”; Opt. Lett., Vol. 9, pp. 102–104, March 1984.

    Article  Google Scholar 

  35. H. Shinohara: “Modal-noise characteristics in aerial optical cable subjected to vibration”; J. Lightwave Techn., Vol. LT-1, pp. 535–541, Dec. 1983.

    Article  Google Scholar 

  36. E. G. Rawson, J. W. Goodman, and R. E. Norton: “Frequency dependence of modal noise in multimode optical fibers”; J. Opt. Soc. Am., Vol. 70, pp. 968–976, August 1980.

    Article  Google Scholar 

  37. H. Olesen: “”; Electron. Lett., Vol. 16, pp. 217–218, 13th May 1980.

    Article  Google Scholar 

  38. B. Moslehi, J. W. Goodman, and E. G. Rawson: “Bandwidth estimation for multimode optical fibers using the frequency correlation function of speckle patterns”; Appl. Opt., Vol. 22, pp. 995–999, 1st April 1983.

    Article  Google Scholar 

  39. B. Crosignani and A. Yariv: “Statistical properties of modal noise in fiber-laser systems”; J. Opt. Soc. Am. Vol. 73, pp. 1022–1027, August 1983.

    Article  Google Scholar 

  40. W. Freude, C. Fritzsche, and G. K. Grau: “Bandwidth estimation for multimode optical fibers using speckle patterns”; Appl. Opt., Vol. 22, pp. 3319–3320, 1st Nov. 1983.

    Article  Google Scholar 

  41. A. J. Weierholt, E. G. Rawson, and J. W. Goodman: “Frequency-correlation properties of optical waveguide intensity patterns”; J. Opt. Soc. Am. A, Vol. 1, pp. 201–205, Feb. 1984.

    Article  Google Scholar 

  42. R. Dandliker, A. Bertholds, and F. Maystre: “How modal noise in multimode fibers depends on source spectrum and fiber dispersion”; IEEE J. Lightwave Techn., Vol. LT-3, pp. 7–12, Feb. 1985.

    Article  Google Scholar 

  43. W. Freude, C. Fritzsche, G. Grau, and Lu Shanda: “Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides”; IEEE J. Lightwave Techn., Vol. LT-4, pp. 64–72, Jan. 1986.

    Article  Google Scholar 

  44. P. R. Couch and R. E. Epworth: “Reproducible modal-noise measurements in system design and analysis”; J. Lightwave Techn., Vol. LT-1, pp. 591–596, Dec. 1983.

    Article  Google Scholar 

  45. F. Bosch, G. L. Dybwad, and C. B. Swan: “Laser fiber-optic digital system performance improvements with superimposed microwave modulation”; Proc. of CLEOS, paper TU DD7, San Diego, USA, Feb. 1980.

    Google Scholar 

  46. K. Sato and K. Asatani: “Superimposed pulse modulation for fibre optic analogue video transmission using semiconductor laser diodes”; Electron. Lett., Vol. 16, pp. 538–540, 3rd July 1980.

    Article  Google Scholar 

  47. K. Nawata, S. Tomita, and K. Wakita: “Modal noise reduction with specific thickness coating”; Electron. Lett., Vol. 20, pp. 504–505, 7th June 1984.

    Article  Google Scholar 

  48. M. Nakamura, K. Kaito, and T. Ozeki: “Modal noise reduced PFM transmission by monopulse to twin-pulse conversion”; Electron. Lett., Vol. 21, pp. 307–308, 28th March 1985.

    Article  Google Scholar 

  49. M. Nakamura, N. Suzuki, Y. Uematsu, T. Ozeki, and S. Takahashi: “Laser linewidth requirement for eliminating modal noise in pulse frequency modulation video transmission”; J. Lightwave Techn., Vol. LT-2, pp. 735–740, Oct. 1984.

    Article  Google Scholar 

  50. T. Kanada and K. Aoyama: “Modal-noise evaluation in multi-mode-fiber transmission”; Opt. Lett., Vol. 8, pp. 339–341, June 1983.

    Article  Google Scholar 

  51. W. R. Throssell and Y. Kanabar: “Modal noise effects arising from source partition noise”; Proc. of 9th Europ. Conf. on Opt. Comm., pp. 447–450, Geneva, Switzerland, Oct. 1983.

    Google Scholar 

  52. K. Petermann: “Nonlinear distortions due to fibre connectors”; Proc. 6th Europ. Conf. on Opt. Comm., York, England, pp. 80–83, Sept. 1980.

    Google Scholar 

  53. H. Olesen: “Interferometric demodulation of optical FM signals and its relation to modal distortion in optical multimode fibers”; J. Lightwave Techn., Vol. LT-1, pp. 453–461, Sept. 1983.

    Article  Google Scholar 

  54. K. Kaede, R. Ishikawa, K. Minemura, R. Lang, T. Furuse, and A. Ueki: “Harmonic distortion due to laser modulation in multimode fibre analogue transmission”; Electron. Lett., Vol. 20, pp. 434–435, 24th May 1984.

    Article  Google Scholar 

  55. W. Bambach and H.-G. Zielinski: “Design of an analog fiber-optic wideband distribution system”; Proc. 7th Europ. Conf. on Opt. Comm., Copenhagen, Denmark, paper 16.4, Sept. 1981.

    Google Scholar 

  56. C. Baack, G. Elze, G. Großkopf, F. Kraus, W. Krick, and L. Kuller: “Analogue optical transmission of 26 t.v. channels”; Electron. Lett., Vol. 15, pp. 300–301, 10th May 1979.

    Article  Google Scholar 

  57. J. E. Bowers: “Microwave signal transmission with high speed InGaAsP lasers”; Proc. OFC/IOOC ‘87, Reno, Nevada, USA, paper WK1, Jan. 1987.

    Google Scholar 

  58. D. N. Payne, A. J. Barlow, and J. J. Ramskov Hansen: “Development of low- and high birefrigence optical fibers”; IEEE J. Quant. Electron., Vol. QE-18, pp. 477–488, April 1982.

    Article  Google Scholar 

  59. G. Arnold, K. Petermann, and E. Weidel: “Polarization mode dispersion measurement in single-mode fibres with a super-luminescent diode”; Proc. 8th Europ. Conf. on Opt. Comm., Cannes, France, Sept. 1982.

    Google Scholar 

  60. S. C. Rashleigh: “Origins and control of polarization effects in single-mode fibres”; J. Lightwave Techn., Vol. LT-1, pp. 312–331, June 1983.

    Article  Google Scholar 

  61. K. Mochizuki, Y. Namihara, and H. Wakabayashi: “Polarization mode dispersion measurements in long single mode fibres”; Electron Lett., Vol. 17, pp. 153–154, 19th Feb. 1981.

    Article  Google Scholar 

  62. K. Petermann: “Nonlinear transmission behaviour of a single-mode fibre transmission line with polarization coupling”; J. Opt. Commun., Vol. 2, pp. 59–64, June 1981.

    Article  Google Scholar 

  63. K. Petermann: “Transmission characteristics of a single-mode fibre transmission line with polarization coupling”; Proc. 7th Europ. Conf. on Opt. Comm., Copenhagen, Denmark, paper 3.2, Sept. 1981.

    Google Scholar 

  64. S. Heckmann: “Modal noise in single-mode fibres operated slightly above cutoff”; Electron. Lett., Vol. 17, pp. 499–500, 9th July 1981.

    Article  Google Scholar 

  65. N. K. Cheung, A. Tomita, and P. F. Glodis: “Observation of modal noise in single-mode-fibre transmission systems”; Electron. Lett., Vol. 21, pp. 5–7, 3rd Jan. 1985.

    Article  Google Scholar 

  66. F. M. Sears, I. A. White, R. B. Kummer, and F. T. Stone: “Probability of modal noise in single-mode lightguide systems”; J. Lightwave Techn., Vol. LT-4, pp. 652–655, June 1986.

    Article  Google Scholar 

  67. J. L. Gimlett, J. Young, R. E. Spicer, and N. K. Cheung: “Degradations in Gb/s DFB laser transmission systems due to phase-to-intensity noise conversion by multiple reflection points”, Electron. Lett., Vol. 24, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Petermann, K. (1988). Noise in Interferometers Including Modal Noise and Distortions. In: Laser Diode Modulation and Noise. Advances in Optoelectronics (ADOP), vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2907-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2907-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1204-8

  • Online ISBN: 978-94-009-2907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics