Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 43))

  • 346 Accesses

Abstract

The Fermi-Dirac integral is defined by

$$ {F_\mu }(x): = \int_0^x {\frac{{{x^\mu }dx}}{{1 + {e^{x - x}}}}} (\mu > - 1). $$

Some exact expressions for F μ are well known. Basing on them one obtains some new approximate expressions. Three cases are distinguished:

Case a \( \mu = 1,2,...,x \geqslant 0 \). The non-polynomial part of F μ (z) is expanded, after a suitable variable transformation, into Chebyshev series (Section 2).

Case b \( \mu = - \frac{1}{2},\frac{1}{2},...,x \geqslant 0 \)is sufficiently small). F μ (z) is expanded in powers of \( x = 1 - {(1 + {e^x})^{\frac{1}{2}}} \). Then Padé approximation is used (Section 3).

Case c \( \mu = - \frac{1}{2},\frac{1}{2},...,x \geqslant {u^2} \), with a sufficiently large u). Fμ(z) is expanded, at first, into a series containing the fonctions Erfi and Eric and, after that, into Chebyshev series with the variable \( u/\sqrt z \)(Section 4).

These methods seem to be more general and, from some points of view, better than the earlier ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Beer, M.N. Chase, P.F. Choquard, Helv.Phys.Acta 28(1955), 529–541.

    MathSciNet  MATH  Google Scholar 

  2. J.S. Blakemore, Approximations for Fermi-Dirac integrals, especially the function F \( \mu =\frac{1}{2} \) (η) used to describe electron density in a semiconductor, Solid State Electron. 25(1982), 1067–1076.

    Article  Google Scholar 

  3. W.J. Cody, H.C. Thacher, Jr., Rational Chebyshev approximations for Fermi-Dirac integrals of orders \( - \frac{1}{2},\frac{1}{2}and\frac{3}{2} \), Math.Comput. 21(1967), 30–40.

    Google Scholar 

  4. R.B. Dingle, The Fermi-Dime integrals \( {F_p}(n) = {(p!)^{ - 1}}\int_0^\infty {{g^p}} {({e^{c - n}} + 1)^{ - 1}}dx \), Appl.Sci.Res.Ser.B 6(1957), 225–239.

    MathSciNet  MATH  Google Scholar 

  5. L. Fox, I.B. Parker, Chebyshev polynomials in numerical analysis, London 1968.

    Google Scholar 

  6. J.Mc. Dongall, E.C. Stoner, The computation of Fermi-Dime functions, Philos.Trans.Roy.Soc. London Ser.A 237(1939), 67–104.

    Google Scholar 

  7. J. Wimp, Computation with recurrence relations, Boston 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company

About this chapter

Cite this chapter

Passkowski, S. (1988). Evaluation of Fermi—Dirac Integral. In: Cuyt, A. (eds) Nonlinear Numerical Methods and Rational Approximation. Mathematics and Its Applications, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2901-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2901-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7807-8

  • Online ISBN: 978-94-009-2901-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics