Skip to main content

Fractal and Multifractal Structures in Kinetic Critical Phenomena

  • Chapter
Stochastic Processes in Physics and Engineering

Part of the book series: Mathematics and Its Applications ((MAIA,volume 42))

Abstract

Kinetic Critical Phenomena consist of irreversible growth models that generate fractal structures. In the last few years a large amount of activity has been devoted to these problems that represent one of the most challenging fields in today’s theoretical physics. The idea is to understand the physical origin for the development of the many fractal structures one can observe in nature. In this respect one of the most interesting models is the one formulated to describe the patterns of dielectric breakdown. It is based on a combination of Laplace equation and a probability field that give rise to random fractals. An essential element for the understanding of these results is the proper characterization of the self-similar properties of the growth probability field. To this purpose the more general concept of multifractal is necessary. This is discussed in some detail and applied to the above model showing that the growth probability should be described by a continuous distribution of singularities. The origin of multifractality is then elucidated by showing that, despite its apparent complexity, it arises in a natural way even in simple random multiplicative processes. This allows to consider apparently unrelated problems like the properties of self-similarity of Anderson localized wavefunctions for which a complete characterization is given. The main open problems as well as the perspectives for future development are briefly discussed for each topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Pietronero and E. Tosatti Eds. Fractals in Physics, NorthHolland, Amsterdam, New York (1986).

    Google Scholar 

  2. A. Aharony, Europhys. News, 17, 41 (1986).

    Google Scholar 

  3. L.P. Kadanoff, Physics Today, Feb. 1986, p. 6.

    Google Scholar 

  4. B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, New York (1983).

    Google Scholar 

  5. D.J. Amit, Field Theory, the Reno-rmalization Group and Critical Phenomena, Mc Graw Hill Int., (1978).

    Google Scholar 

  6. L. Peliti and L. Pietronero, Random Walks with Memory1, La Rivista del Nuovo Cim., to appear.

    Google Scholar 

  7. L. Niemeyer, L. Pietronero and H.J. Wiesmann, Phys. Rev. Lett., 52 1033 (1984).

    Article  MathSciNet  Google Scholar 

  8. L. Pietronero and H.J. Wiesmann, J. Stat. Phys. 36, 909 (1984).

    Article  Google Scholar 

  9. T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  Google Scholar 

  10. P. Meakin, Phys. Rev. A 27, 1495 (1983).

    Article  MathSciNet  Google Scholar 

  11. J. Nittmann and H.E. Stanley, Nature 321, 663 (1986).

    Article  Google Scholar 

  12. For an updated discussion see Parts V(A) and V(B) of Ref. (1).

    Google Scholar 

  13. L. Niemeyer, L. Pietronero and H.J. Wiesmann, Phys. Rev. Lett. (Response to a Comment), 4-th Aug. 1986, to appear.

    Google Scholar 

  14. Lyklema, C. Evertsz and L. Pietronero, Europhys. Lett 2, 77 (1986).

    Article  Google Scholar 

  15. H.J. Wiesmann and L. Pietronero, Ref. (1) p. 151.

    Google Scholar 

  16. B.B. Mandelbrot, J. Fluid. Mech. 62, 331 (1974).

    Article  MATH  Google Scholar 

  17. A. Renyi, Probability Theory, North-Holland, Amsterdam (1970).

    Google Scholar 

  18. H.G.E. Hentschel and I. Procaccia, Physica 8D, 435 (1983).

    Google Scholar 

  19. P. Grassberger and I. Procaccia, Physica 13D, 34 (1984).

    Google Scholar 

  20. V. Frisch and G. Parisi in Turbulence and Predictability of Geophysical Flows and Climate Dynamics , M. Ghil, R. Benzi and G. Parisi Eds. North-Holland, New York (1985), p. 84.

    Google Scholar 

  21. R. Benzi, G. Paladin, G. Parisi and A. Vulpiani, J. Phys. A17, 3521 (1984); J. Phys. A18, 2157 (1985).

    MathSciNet  Google Scholar 

  22. L. de Arcangelis, S. Redner and A. Coniglio, Phys. Rev. B31, 4725 (1985) and preprint.

    Google Scholar 

  23. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Shraiman, Phys. Rev. A33, 1141 (1986).

    MathSciNet  Google Scholar 

  24. A.P. Siebesma and L. Pietronero, submitted to Phys. Rev. Lett.

    Google Scholar 

  25. G. Paladin and A. Vulpiani, preprint.

    Google Scholar 

  26. M. Plischke and Z. Racz, Phys. Rev. Lett. 53, 415 (1984).

    Article  Google Scholar 

  27. R. Jullien and R. Botet, Phys. Rev. Lett. 54, 2055 (1985) and in Ref. (1), p. 251.

    Article  Google Scholar 

  28. P. Meakin, R. Jullien and R. Botet, Europhys. Lett, 1, 609 (1986).

    Article  Google Scholar 

  29. M. Kardar, G. Parisi and Y.C. Zhang, Phys. Rev. Lett. 56, 889, (1986).

    Article  MATH  Google Scholar 

  30. T.C. Halsey, P. Meakin and I. Procaccia, Phys. Rev. Lett. 56, 854, (1986).

    Article  Google Scholar 

  31. C. Amitrano, A. Coniglio and F. di Liberto, preprint.

    Google Scholar 

  32. P. Meakin, preprint.

    Google Scholar 

  33. C. Evertsz, E. Hafkenscheid, R. Harmsma and L. Pietronero, preprint.

    Google Scholar 

  34. K. Ishii, Progr. Theor. Phys. Suppl. 53, 77 (1973)

    Article  Google Scholar 

  35. J.P. Bouchaud and P. Le Doussal, J. Phys. A19, 797 (1986).

    Google Scholar 

  36. J.L. Richard, J. Phys. C19, 1519 (1986).

    Google Scholar 

  37. D. Schertzer and S. Lovehoy, in Ref. [l] , p. 457.

    Google Scholar 

  38. G. Paladin and A. Vulpiani, in Ref. [l], p. 447.

    Google Scholar 

  39. CM. Soukoulis and E.N. Economou, Phys. Rev. Lett. 52, 565 (1984).

    Article  Google Scholar 

  40. H.E. Roman, J. Phys. C19, L285 (1986).

    Google Scholar 

  41. C. Castellani and L. Peliti, J. Phys. A19, L. 429 (1986).

    Google Scholar 

  42. L. Pietronero, A.P. Siebesma, E. Tosatti and M. Zanetti, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company

About this chapter

Cite this chapter

Pietronero, L., Evertsz, C., Siebesma, A.P. (1988). Fractal and Multifractal Structures in Kinetic Critical Phenomena. In: Albeverio, S., Blanchard, P., Hazewinkel, M., Streit, L. (eds) Stochastic Processes in Physics and Engineering. Mathematics and Its Applications, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2893-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2893-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7803-0

  • Online ISBN: 978-94-009-2893-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics