Skip to main content

A hybrid solution for wave propagation problems in inhomogeneous media

  • Chapter
Mathematical Geophysics

Part of the book series: Modern Approaches in Geophysics ((MAGE,volume 3))

Abstract

This chapter deals with a method of computing wave fields in inhomogeneous media. It is based on a hybrid formulation — in the frequency domain — in terms of finite elements and a boundary integral representation. Numerical aspects of the method are discussed, and computational results for a simple model configuration are compared with analytical results. Finally the method is applied in a seismic modeling experiment. In this experiment the effect of a low velocity sediment fill at the surface of a halfspace on an incident teleseismic wave is modelled. The results clearly illustrate the strong amplification effect of the sediments on the surface displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M., and Stegun, L, 1964. Handbook of mathematical functions, New York, Dover.

    Google Scholar 

  • Aki, K. and Lamer, K. L., 1970. Surface Motion of a Layered Medium Having an Irregular Interface due to Incident Plane SH Waves, J. Geophys. Res., 75, 933–954.

    Article  Google Scholar 

  • Aki, K., and Richards, P. G., 1980. Quantitative Seismology, San Francisco, W.H. Freeman.

    Google Scholar 

  • Alford, R.M., Kelly, K.R., and Boore, D.M., 1974. Accuracy of finite-difference modelling of the acoustic wave equation, Geophysics, 39, 834–842.

    Article  Google Scholar 

  • Alterman, Z.S., and Karal, F.C., 1968. Propagation of elastic waves in layered media by finite difference methods, Bull. Seism. Soc. Am., 58, 367–398.

    Google Scholar 

  • Banaugh, R. P., and Goldsmith, N., 1963. Diffraction of steady acoustic waves by surfaces of arbitrary shape, J. Ac. Soc. Am., 35.

    Google Scholar 

  • Bard, P.Y. and Bouchon, M., 1980. The seismic response of sediment-filled valleys. Part 1. The case of incident SH waves, Bull. Seism. Soc. Am., vol.70, 1263–1286.

    Google Scholar 

  • Belytschko, T., and Mullen, R., 1978, On dispersive properties of finite element solutions. In, Modern Problems in Elastic Wave Propagation, eds Julius Miklowitz, and Jan D. Achenbach. Wiley.

    Google Scholar 

  • Ben-Menahem, A., and Singh, S. J., 1981. Seismic waves and sources, Springer Verlag.

    Google Scholar 

  • Berkhoff, J.C.W., 1974. Linear wave propagation problems and the finite element method. In Finite elements in fluids 1, Viscous flow and hydrodynamics, proceedings “International Symp. on the f.e.m. in flow problems”, Univ. College of Wales, eds. Oden, J.T., Taylor, C., Gallagher, R.H. and Zienkiewicz, O.C.

    Google Scholar 

  • Berkhoff, J.C.W., 1976. Mathematical models for simple harmonic linear water waves wave diffraction and refraction, PhD Thesis TH-Delft.

    Google Scholar 

  • Bolomey, J.-C. and Tabbara, W., 1973. Numerical aspects on coupling between complementary boundary value problems., IEEE Transactions on Antennas and propagation, AP-21, 356–363.

    Article  Google Scholar 

  • Boore, D. M., 1972. Finite difference methods for seismic wave propagation in heterogeneous materials. In Seismology: Surface waves and earth oscillations, ed B.A. Bolt, 11, Academic press.

    Google Scholar 

  • Boore, D. M., Lamer, K., and Aki, K., 1971. Comparison of two independent methods for the solution of wave scattering problems: Respons of a sedimentary basin to vertically incident SH waves, J. Geophys. Res., 76, 558–569.

    Article  Google Scholar 

  • Bouchon, M. and Aki, K., 1977. Near-field of a seismic source in a layered medium with irregular interfaces, Geophys. J. R. Astr. Soc, 50, 669–684.

    Google Scholar 

  • Burton, A.J., and Miller, G.F., 1971. The application of integral equation methods to the numerical solution of some exterior boundary value problems., Proc. Roy. Soc. London, Ser. A, 323, 201–210.

    Article  Google Scholar 

  • Chin, R.C.Y., Hedstrom, G. and Thigpen, L., 1984. Numerical Methods in Seismology, J. Comp. Phys., 54, 18–56.

    Article  Google Scholar 

  • Cooley, J.W., and Tukey, S.W., 1965. An algorithm for the machine calculation of complex Fourier series, Math. Comp., 19, 297–301.

    Article  Google Scholar 

  • Copley, L.G., 1968. Fundamental results concerning integral representations in acoustic radiation, J. Ac. Soc. Am., 44, 28–32.

    Article  Google Scholar 

  • Courant, R., and Hilbert, D., 1968. Methoden der Mathematischen Physik, Berlin, Springer-Verlag.

    Google Scholar 

  • Crichlow, J. M., Beckeis, D., and Aspinall, W.P., 1984. Two-dimensional analysis of the effect of subsurface anomalies on the free surface respons to incident SH-waves, Geophys. J. R. Astr. Soc, 79.

    Google Scholar 

  • Colton, D. and Kress, R., 1983. Integral Equation Methods in Scattering Theory, New York, John Wiley. 669–684.

    Google Scholar 

  • Colton, D. and Kress, R., 1983. The unique solvability of the null field equations, Q. Jl Mech. Appl. Math., 36, 87–95.

    Article  Google Scholar 

  • Day, S.M., 1977. Finite element analysis of seismic scattering problems, PhD Thesis Univ. Cal., San Diego. Desai, CS., and Abel, J. F., 1972. Introduction to the Finite Element Method, New York, van Nostrand Reinhold.

    Google Scholar 

  • Dongarra, J.J., Moler, C.B., Bunch, J.R., and Stewart, G.W., 1979. LINPACK User’s Guide, Philadelphia, SIAM.

    Google Scholar 

  • Eringen, A. C, and Suhubi, E. S., 1975. Elastodynamics, New York, Academic press.

    Google Scholar 

  • Hoenl, H., Maue, A.W., and Westfahl, K., 1961. Theorie der Beugung. In Handbuch der Physik, ed S. Fluegge, 25, 218–583, Springer.

    Google Scholar 

  • Hong, M., and Bond, L.J., 1986. Application of the finite difference method in seismic source and wave diffraction simulation, Geophys. J. R. Astr. Soc, 87.

    Google Scholar 

  • De Hoop. A.T., 1958. Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory, PhD Thesis Techn. Univ. Delft.

    Google Scholar 

  • Kelly, K. R., 1983. Numerical study of Love wave propagation, Geophysics, 48, 833–853.

    Article  Google Scholar 

  • Kelly, K. R., Ward, R. W., Treitel, S., and Alford, R. M., 1976. Synthetic seismograms: a finite difference approach, Geophysics, 41, 2–27.

    Article  Google Scholar 

  • Kennett, B.L.N., 1983. Seismic wave propagation in stratified media, Cambridge university press.

    Google Scholar 

  • Kuepper, F.J., 1958. Theoretische Untersuchungen ueber die Mehrfachaufstellung von Geophonen, Geophys. Prosp., 6, 194–256.

    Article  Google Scholar 

  • Kupradze, V. D., 1956. Randwertaufgaben der Schwingungstheorie und Integralgleichungen, Berlin, VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Kupradze, V. D., 1963. Dynamical problems in elasticity. In Progress in solid mechanics, eds I.N. Sneddon and R. Hill, Vol. 3.

    Google Scholar 

  • Levander, A.R., and Hill, N.R., 1985. P-SV resonances in irregular low velocity surfaces, Bull. Seism. Soc. Am., 75, 847–864.

    Google Scholar 

  • Lysmer, J., and Drake, L. A., 1971. The propagation of Love waves across nonhorizontally layered structures, Bull. Seism. Soc. Am., 61, 1233–1251.

    Google Scholar 

  • Marfurt, K. J., 1984. Accuracy of finite difference and finite element modeling of the scalar and elastic wave equations, Geophysics, 49, 533–549.

    Article  Google Scholar 

  • Mitchell, A. R., 1969. Computational methods in partial differential equations, New York, Wiley.

    Google Scholar 

  • Olsen, K., and Hwang, L. S., 1971. Oscillations in a bay of arbritrary shape and variable depth, J. Geophys.Res., 76, 5048–5064.

    Article  Google Scholar 

  • Ralston, A., 1965. A first course in numerical analysis, New York, McGraw-Hill.

    Google Scholar 

  • Reynolds, A. C, 1978. Boundary conditions for the numerical solution of wave propagation problems, Geophysics, 43, 1099–1111.

    Article  Google Scholar 

  • Sanchez-Sesma, F. J., 1983. Diffraction of elastic waves by three dimensional surface irregularities, Bull. Seism. Soc. Am., 73, 1621–1636.

    Google Scholar 

  • Sanchez-Sesma, F. J., Herrera, I., and Aviles, J., 1982. A boundary method for elastic wave diffraction: application to scattering of SH waves by surface irregularities, Bull. Seism. Soc. Am., 72, 473–490.

    Google Scholar 

  • Schenck, H. A., 1968. Improved integral formulation for acoustic radiation problems, J. Ac. Soc. Am., 44, 41–58.

    Article  Google Scholar 

  • Schuster, G.Th., 1984. Some boundary integral equation methods and their application to seismic exploration, PhD Thesis, Univ. Columbia.

    Google Scholar 

  • Segal, A., 1980. AFEP user manual,, Dept. of Math. Techn. University Delft.

    Google Scholar 

  • Sharma, D. L., 1967. Scattering of steady elastic waves by surfaces of arbitrary shape, Bull. Seism. Soc. Am., 57, 795–812.

    Google Scholar 

  • Smith, W. D., 1974. A non reflecting plane boundary for wave propagation problems, J. Comp. Phys., 15, 492–503.

    Article  Google Scholar 

  • Smith, W. D., 1975. The application of finite element analysis to body wave propagation problems, Geophys. J. R. Astr. Soc, 42, 747–768.

    Article  Google Scholar 

  • Stoer, J., 1972. Einfuehrung in die numerische Mathematik I, Berlin, Springer-Verlag.

    Google Scholar 

  • Strang, G., and Fix, G.J., 1973. An analysis of the finite element method, Prentice-Hall.

    Google Scholar 

  • Tan, T. H., 1975. Scattering of elastic waves by elastically transparant obstacles, Appl. Sci. Res., 31, 29–51.

    Article  Google Scholar 

  • Tan, T. H., 1975. Diffraction theory for time harmonic elastic waves, PhD Thesis, Techn. Univ. Delft.

    Google Scholar 

  • Tobocman, W., 1984. Calculation of acoustic wave scattering by means of the Helmholtz integral equation, J. Ac. Soc. Am., 76, 599–607.

    Article  Google Scholar 

  • Van den Berg, A. P., 1984. A hybrid solution of wave propagation problems in regular media with bounded irregular inclusions, Geophys. J. R. Astr. Soc, 79, 3–10.

    Google Scholar 

  • Van den Berg, A. P., 1987. A hybrid method for the solution of seismic wave propagation problems, PhD Thesis Univ. Utrecht.

    Google Scholar 

  • Wilkinson, J. H., 1965. The algebraic eigenvalue problem, Oxford University Press.

    Google Scholar 

  • Wilton, D.T., 1978. Acoustic radiation and scattering from elastic structures., Int. J. Num. Meth. Eng., 13, 123–138.

    Article  Google Scholar 

  • Wong, H. L., and Jennings, P. C, 1975. Effects of canyon topography on strong ground motion, Bull. Seism. Soc. Am., 65, 1239–1257.

    Google Scholar 

  • Zahradnik, J., and Urban, L., 1984. Effect of a simple mountain range on underground seismic motion, Geophys. J. R. Astr. Soc, 79, 167–183.

    Google Scholar 

  • Zienkiewicz, O. C, 1977. The finite element method, 3rd edition, McGraw-Hill.

    Google Scholar 

  • Zienkiewicz, O. C, Kelly, D. W., and Bettes, P., 1977. The coupling of the finite element method and boundary solution procedures, Int J. Num. Meth. Engineering, 11, 355–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company

About this chapter

Cite this chapter

van den Berg, A. (1988). A hybrid solution for wave propagation problems in inhomogeneous media. In: Vlaar, N.J., Nolet, G., Wortel, M.J.R., Cloetingh, S.A.P.L. (eds) Mathematical Geophysics. Modern Approaches in Geophysics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2857-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2857-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7785-9

  • Online ISBN: 978-94-009-2857-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics