Skip to main content

Infinite Prandtl number spherical-shell convection

  • Chapter

Part of the book series: Modern Approaches in Geophysics ((MAGE,volume 3))

Abstract

This work presents an overview of numerical simulations of thermal convection for constant viscosity, infinite Prandtl number fluids in a spherical shell, with mantle convection being the main application. Using high-resolution grids on a supercomputer Cray-2, we have monitored the transitions from steady state to the onset of oscillatory time-dependent convection. This occurs at a Rayleigh number which is around 30 times the critical for an inner to outer radii of.62. Additional bifurcations are found with increasing strength of convection. This process culminates in chaotic convection. Analysis of the spatial correlation function of the time-dependent signals shows that the dimensionality of this chaotic attractor, at about 60 times the critical, is around 2.8 and resembles a low dimensional fractal. A large scale circulation, dominated by the degree n =2 component, is found to coexist with aperiodic boundary layer instabilities, mainly starting from the bottom. Spectral analysis of the power associated with the thermal anomalies reveals an upward cascade of energy from n=2 to n=4 to 6 at the bottom boundary. This last signature agrees well with recent seismic findings at the core-mantle boundary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.L. and Bass, J.D., 1986. Transition region of the Earth’s upper mantle, Nature, 320, 321–328.

    Article  Google Scholar 

  • Anderson, D.L., 1987. A seismic equation of state II. Shear properties and thermodynamics of the lower mantle, Phys. Earth Plan. Int., 45,307–323.

    Article  Google Scholar 

  • Batchelor, G.K., 1967. An introduction to fluid dynamics, Cambridge University Press, 615 pp.

    Google Scholar 

  • Bergé, P., Pomeau, Y. and Vidal, Ch., 1984. L’ordre dans le chaos, Herman, Paris, 353pp, (in French).

    Google Scholar 

  • Birch, F., 1952. Elasticity and constitution of the Earth’s interior,J. Geophys. Res., 57, 227–286.

    Article  Google Scholar 

  • Busse, F.H., 1967. The stability of finite amplitude cellular convection and its relation to an extremum principle, J. Fluid Mech., 30, 625–649.

    Article  Google Scholar 

  • Busse, F.H. and Whitehead, J.A., 1971. Instabilities of convection rolls in a high Prandtl number fluid, J. Fluid Mech., 47, 305–320.

    Article  Google Scholar 

  • Busse, F.H. and Whitehead, J.A., 1974. Oscillatory and collective instabilities in large Prandtl number convection, J. Fluid Mech., 66, 67–69.

    Article  Google Scholar 

  • Busse, F.H., 1975. Patterns of convection in spherical shells, J. Fluid Mech., 72, 67–85.

    Article  Google Scholar 

  • Busse, F.H. and Riahi, N., 1982. Patterns of convection in spherical shells. Part 2, J. Fluid Mech., 123,283–301.

    Article  Google Scholar 

  • Busse, F.H., 1983. Quadmpole convection in the lower mantle, Geophys. Res. Lett., 10, 285–288.

    Article  Google Scholar 

  • Carrigan, C.R., 1982. Multiple-scale convection in the Earth’s mantle: a three dimensional study, Science, 215, 965–967.

    Article  Google Scholar 

  • Carrigan, C.R., 1985. Convection in an internally heated, high Prandtl number fluid: a laboratory study, Geophys. Astr. Fluid Dyn., 32, 1–21.

    Article  Google Scholar 

  • Chandrasekhar, S., 1961. Hydrodynamic and hydromagnetic stability, Oxford, Clarendon press.

    Google Scholar 

  • Creager, K.C. and Jordan, T.H., 1986. Aspherical structure of the core mantle boundary from PKP travel times, Geophys.Res.Lett., 13, 1497–1500.

    Article  Google Scholar 

  • Christensen, U.R., 1984. Convection with pressure and temperature dependent non-Newtonian rheology, Geophys. J. R. Astr. Soc., 77, 343–384.

    Google Scholar 

  • Christensen, U.R. and Yuen, D.A., 1984. The interaction of a subducting lithospheric slab with a chemical or phase boundary, J. Geophys. Res., 89, 4389–4402.

    Article  Google Scholar 

  • Christensen, U.R. and Yuen, D.A., 1985. Layered convection induced by phase transitions, J. Geophys. Res., 90, 10291–10300.

    Article  Google Scholar 

  • Crough, S.T. and Jurdy, D.M., 1980. Subducted lithosphere, hotspots, and the geoid, Earth Plan. Sci. Lett., 48, 15–22.

    Article  Google Scholar 

  • Curry, J.H. and Yorke, J.A., 1977. A transition from Hopf bifurcation to chaos: computer experiments with map on R2, Lecture notes in Mathematics, 668, 48–60, Springer-verlag.

    Article  Google Scholar 

  • Dubois, M., Bergé, P. and Croquette, V., 1981. Etude de regimes convectifs instationnaires à l’aide des diagrammes de Poincaré, C. R. Acad. Sc. Paris, 293, 409–411.

    Google Scholar 

  • Dziewonski, A.M., Hager, B.H. and O’Connell, R.J., 1977. Large scale heterogeneities in the lower mantle, J. Geophys. Res., 82,239–255.

    Article  Google Scholar 

  • Dziewonski, A.M., 1984. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6, J. Geophys. Res., 89, 5929–5952.

    Article  Google Scholar 

  • Ellsworth, K., Schubert, G. and Sammis, CG., 1985. Viscosity profile of the lower mantle, Geophys. J. R. Astr. Soc., 83, 199–214.

    Google Scholar 

  • Fleitout, L.M. and Yuen, D.A., 1984. Steady-state, secondary convection beneath lithospheric plates with temperature and pressure dependent viscosity, J. Geophys. Res., 84, 9227–9244.

    Article  Google Scholar 

  • Giardini, D., Li, X.H. and Woodhouse, J.H., 1987. Three dimensional structure of the Earth core from splitting in free oscillation spectra, Nature, 325, 405–411.

    Article  Google Scholar 

  • Grassberger, P. and Procaccia, L, 1983. Characterization of strange attractors, Phys. Rev. Lett., 50,346–349.

    Article  Google Scholar 

  • Guckenheimer, J., 1986. Strange attractors in fluid: another view, Ann. Rev. Fluid Mech., 18,15–31.

    Article  Google Scholar 

  • Hansen, U. and Ebel, A., 1984. Numerical and dynamical stability of convection cells in the Rayleigh number range 103–8x10 5, Ann. Geophys., 2, 291–302.

    Google Scholar 

  • Hansen, W., 1987. Zur Zeitabhängigkeit der thermischen Konvektion im Erdmantel und der doppelt-diffusiven Konvektim in Magmakammern, PhD thesis, Geophysics, Univ. Cologne, F.R.Germany.

    Google Scholar 

  • Hansen, U., 1986. On the influence of the aspect ratio on time dependent thermal convection, E.O.S., 67,1195.

    Google Scholar 

  • Hart, J.E., Toomre, J., Deane, A.E., Hurlburt, N.E., Glatzmaier, G.A., Fichu, G.H., Leslie, F., Fowlis, W.W. and Gilman, P.A., 1986. Laboratory experiments on planetary and stellar convection performed on spacelab 3, Science, 234, 61–64.

    Article  Google Scholar 

  • Houston, M.H. and Debremaecker, J.C., 1974. ADI solution of free convection in a variable viscosity fluid, J. Comput. Phys., 16, 221–239.

    Article  Google Scholar 

  • Howard, L.N. and Krishnamurti, R., 1986. Large scale flow in turbulent convection. A mathematical model, J. Fluid Mech., 170,385–410.

    Article  Google Scholar 

  • Jarvis, G.T. and McKenzie, D.P., 1980. Convection in a compressible fluid with infinite Prandtl number, J. Fluid Mech., 96, 515–583.

    Article  Google Scholar 

  • Jarvis, G.T. and Peltier, W.R., 1982. Mantle convection as a boundary layer phenomenon, Geophys. J. R. Astr. Soc., 68, 385–424.

    Google Scholar 

  • Jarvis, G.T., 1984. Time-dependent convection in the Earth’s mantle, Phys. Earth Plan. Int., 36, 305–327.

    Article  Google Scholar 

  • Jarvis, G.T., 1985. The long-wavelength component of mantle convection, Phys. Earth Plan. Int., 40, 24–42.

    Article  Google Scholar 

  • Jarvis, G.T. and Peltier, W.R., 1986. Lateral heterogeneity in the convecting mantle, J. Geophys. Res., 91, 435–451.

    Article  Google Scholar 

  • Kimura, S., Schubert, G. and Straus, J.M., 1986. Route to chaos in porous medium thermal convection, J. Fluid Mech., 166, 305–324.

    Article  Google Scholar 

  • Koster, J.N. and Müller, U., 1984. Oscillatory convection in vertical slots, J. Fluid Mech., 139, 363–390.

    Article  Google Scholar 

  • Krishnamurti, R., 1970-a. On the transition to turbulent convection. Parti. The transition from the two to three-dimensional flow.,J. Fluid Mech., 42, 295–307.

    Article  Google Scholar 

  • Krishnamurti, R., 1970-b. On the transition to turbulent convection. Part 2. The transition to time-dependent flow., J. Fluid Mech., 42, 309–320.

    Article  Google Scholar 

  • Krishnamurti, R., 1973. Some further studies on the transition to turbulent convection, J. Fluid Mech., 60, 285–303.

    Article  Google Scholar 

  • Krishnamurti, R. and Howard, L.N., 1981. Large scale flow generation in turbulent convection, Proc. Nat. Acad. Sci., 78, 1981–1985.

    Article  Google Scholar 

  • Machetel, P, and Rabinowicz, M., 1985. Transitions to a two mode axisymmetrical spherical convection: application to the Earth’s mantle, Geophys. Res. Lett., 12, 227–230.

    Article  Google Scholar 

  • Machetel, P., Rabinowicz, M. and Bemardet, P., 1986. Three-dimensional convection in spherical shells, Geophys. Astr. Fluid Dyn., 37, 57–84.

    Article  Google Scholar 

  • Machetel, P. and Yuen, D.A., 1986. The onset of time-dependent convection in spherical shells as a clue to chaotic convection in the Earth’s mantle, Geophys. Res. Lett., 13, 1470–1473.

    Article  Google Scholar 

  • Machetel, P. and Yuen, D.A., 1987. Chaotic axisymmetrical spherical convection and large scale mantle circulation, Earth Plan. Sci. Lett., in press.

    Google Scholar 

  • Malraison, B., Atten, P., Bergé, P. and Dubois, M., 1983. Dimension d’attracteurs étranges: une détermination expérimentale en régime chaotique de deux systèmes chaotiques, C. R. Acad. Sc. Paris, 297, 209–214 (also in Journal de Physiques lettres).

    Google Scholar 

  • Marcus, P.S., 1981. Effects of truncation in modal representations of thermal convection, J. Fluid Mech., 103, 241–255.

    Article  Google Scholar 

  • Master, G., Jordan, T.H., Silver, P.G. and Gilbert, F., 1982. Aspherical Earth structure from fundamental spheroidal mode data, Nature, 298, 609–613.

    Article  Google Scholar 

  • McKenzie, D.P., Roberts, J.M. and Weiss, N.O., 1974. Convection in the Earth’s mantle: toward a numerical simulation, J. Fluid Mech., 62, 465–538.

    Article  Google Scholar 

  • Morelli, A. and Dziewonski, A.M., 1987. Topography of the core-mantle boundary and lateral homogeneity of the liquid core, Nature, 325, 678–682.

    Article  Google Scholar 

  • Nataf, H.C., Froidevaux, C, Levrat, J.L. and Rabinowicz, M., 1981. Laboratory convection experiments: effects of lateral cooling and generation of instabilities in the horizontal boundary layers, J. Geophys. Res., 85, 6143–6154.

    Article  Google Scholar 

  • Newhouse, S., Ruelle, D. and Takens, F., 1978. Occurrence of strange axiom A attractors near quasi periodic flows on Tm,m≥3, Commun. Math. Phys., 64, 35–40.

    Article  Google Scholar 

  • Olson, P.L., 1981. Mantle convection with spherical effects, J. Geophys. Res., 86, 4881–4890.

    Article  Google Scholar 

  • Olson, P.L., 1984. An experimental approach to thermal convection in a two layered mantle, J. Geophys. Res., 89, 11293–11302.

    Article  Google Scholar 

  • Pekeris, C.L., 1935. Thermal convection in the interior of the Earth, Mon. Not. Roy. Astr. Soc, Geophys. Suppl., 3, 343–367.

    Google Scholar 

  • Quareni, F. and Yuen, D.A., 1987. Mean field methods in mantle convection, this issue.

    Google Scholar 

  • Riahi, N., Geiger, G. and Busse, F.H., 1982. Finite Prandtl number convection in spherical shells, Geophys. Astr. Fluid Dyn., 20,307–318,

    Article  Google Scholar 

  • Richter, F.M., 1973. Convection and the large scale circulation of the mantle, J. Geophys. Res., 78, 8735–8745.

    Article  Google Scholar 

  • Roache, P.J., 1972. Computational fluid dynamics, Hermosa Publishers, 434 pp.

    Google Scholar 

  • Ruelle, D. and Takens, F., 1971. On the nature of turbulences, Commun. Math. Phys., 20, 167–192.

    Article  Google Scholar 

  • Schubert, G. and Young, R.E., 1976. Cooling the Earth by whole mantle subsolidus convection: A constraint on the viscosity of the lower mantle, Tectonophysics, 35, 201–214.

    Article  Google Scholar 

  • Schubert, G., 1979. Subsolidus convection in the mantles of terrestrial planets, Ann. Rev. Earth Plan. Sci., 7, 289–342.

    Article  Google Scholar 

  • Schubert, G. and Zebib, A., 1980. Thermal convection of an internally heated infinite Prandtl number fluid in a spherical shell, Geophys. Astr. Fluid Dyn., 15, 65–90.

    Article  Google Scholar 

  • Schuster, H.G., 1984. Deterministic chaos: an introduction, Physik Verlag, Weinheim, F.R. Germany.

    Google Scholar 

  • Torrance, K.E. and Turcotte, D.L., 1971. Structure of convection cells in the mantle, J. Geophys. Res., 76, 1154–1161.

    Article  Google Scholar 

  • Turcotte, D.L. and Oxburgh, E.R., 1967. Finite-amplitude convective cells and continental drift, J. Fluid Mech., 28, 29–42.

    Article  Google Scholar 

  • Vincent, A.P., 1986. Spectral modelling of plumes in multiprocessing supercomputers, E.O.S., 67,1195.

    Google Scholar 

  • Vlaar, N.J., 1983. Thermal anomalies and magmatism due to lithospheric doubling and shifting, Earth and Planet. Sci. Lett., 65, 322–330.

    Article  Google Scholar 

  • Whitehead, J.A. and Parson, B., 1978. Observations of convection at Rayleigh numbers up to 760,000 in a fluid with large Prandtl number, Geophys. Astr. Fluid Dyn., 9,201–217.

    Article  Google Scholar 

  • Woodhouse, J.H. and Dziewonski, A.M., 1984. Mapping the upper mantle: Three dimensional modeling of Earth structure by inversion of seismic waveforms, J. Geophys. Res., 89, 5953–5986.

    Article  Google Scholar 

  • Young, R.E., 1974. Finite amplitude convection in a spherical shell,J. Fluid Mech., 63, 695–721.

    Article  Google Scholar 

  • Yuen, D.A. and Peltier, W.R., 1980. Mantle plumes and the thermal stability of the D’layer, Geophys. Res. Lett., 9, 625–628.

    Article  Google Scholar 

  • Yuen, D.A., Weinstein, S.A. and Olson, P.L., 1986-a. High resolution calculations of large aspect-ratio convection, E.O.S.,67,1194.

    Google Scholar 

  • Yuen, D.A., Sabadini, R., Gaspareni, P. and Boschi, E., 1986-b. On transient rheology and glacial isostasy, J. Geophys. Res.,91,11420–11438.

    Article  Google Scholar 

  • Zebib, A., Schubert, G. and Straus, J.M., 1980. Infinite Prandtl number convection in a spherical shell, J. Fluid Mech., 97,257–277.

    Article  Google Scholar 

  • Zebib, A., Schubert, G., Dein, J.L. and Paliwal, C, 1983. Character and stability of axisymmetric thermal convection in spheres and spherical shells, Geophys. Astr. Fluid Dyn., 23,1–42.

    Article  Google Scholar 

  • Zebib, A., Goyal, A.K. and Schubert, G., 1985. Convective motions in a spherical shell, J. Fluid Mech., 152, 39–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company

About this chapter

Cite this chapter

Machetel, P., Yuen, D.A. (1988). Infinite Prandtl number spherical-shell convection. In: Vlaar, N.J., Nolet, G., Wortel, M.J.R., Cloetingh, S.A.P.L. (eds) Mathematical Geophysics. Modern Approaches in Geophysics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2857-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2857-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7785-9

  • Online ISBN: 978-94-009-2857-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics