Skip to main content

A Valence Concept for Molecular Structure and Reactions

  • Chapter
Molecules in Physics, Chemistry, and Biology

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 3))

Abstract

Valence is a concept to quantify the covalent bonding between atoms in molecules as opposed to ionic bonding. Chemical reactivity provided the driving force for a quantitative fixation in terms of a convenient valence index. It is most interesting that the earliest manifestation of a theory of valence started with a consideration of electronic distribution in condensed unsaturated hydrocarbons [1]. It was thought that positions with greater or lesser reactivity may appear in the molecule if the π electrons are more unevenly distributed than in benzene, as in anthracene. Svartholm also recognized that there are two different competing kinds of reactivity in these molecules, namely reactivity at atoms and reactivity at bonds. His analysis allowed him to compare different regions in a single molecule only, but not several molecules among themselves. Several years passed before improvement of this simple picture came from two sides. Daudel and Pullman [2] normalized the portions of electrons that were attached to bonds and the portions of nonbonding electrons providing reactive sites at atoms, so that the sum of all portions was equal to the number of π electrons. This simple but powerful procedure allowed a comparison between different molecules and provided trends in reactivity from benzene to anthracene. From this analysis it was concluded that the a position in naphthalene is more reactive than the carbon positions in benzene. This was the intuitive birth of the idea of free valence for both different molecular sites and different molecular systems. The expression free valence was actually used five years later by Daudel et al. [3] in a paper on static and dynamic indices based on molecular diagrams. A formalism was proposed to relate the activation energy of a substitution reaction in an unsaturated hydrocarbon and the free valence at the atomic site. The attack of the α position of naphthalene by a radical was discussed in some detail. More general applications to substitution and addition reactions were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Svartholm: Arkiv Kemi, Mineral. Geol. 15A, No. 13, 1 (1941).

    Google Scholar 

  2. R. Daudel, and A. Pullman: Compt. rend. 220, 888 (1945).

    CAS  Google Scholar 

  3. R. Daudel, C. Sandorfy, C. Vroelant, P. Yvan, and O. Chalvet: Bull. Soc. Chim. France 17, 66 (1950).

    Google Scholar 

  4. C. A. Coulson: Proc. Roy. Soc. A169, 413 (1939).

    Google Scholar 

  5. C. A. Coulson: Faraday Soc. Discussion 2, 9 (1947).

    Article  Google Scholar 

  6. F. H. Burkitt, C. A. Coulson, H. C. Longuet-Higgins: Trans. Faraday Soc. 47, 553 (1951).

    Article  CAS  Google Scholar 

  7. W. E. Moffit: Trans. Faraday. Soc. 45, 373 (1949).

    Article  Google Scholar 

  8. C. A. Coulson, and H. C. Longuet-Higgins: Proc. Roy. Soc. 192, 16 (1947).

    Article  CAS  Google Scholar 

  9. K. Fukui, T. Yonezawa, H. Shingu: J. Chem. Phys. 20, 722 (1952).

    Article  CAS  Google Scholar 

  10. K. Jug: unpubllshed results.

    Google Scholar 

  11. M. S. Gopinathan, and K. Jug: Theor. Chim. Acta 63, 497, 511 (1983).

    Article  Google Scholar 

  12. P.O.Löwdin:J. Chem. Phys. 18, 365 (1950).

    Article  Google Scholar 

  13. K. Wiberg: Tetrahedron 24, 1093 (1968).

    Article  Google Scholar 

  14. J. C. Martin: J. Am. Chem. Soc. 101, 5057 (1979).

    Article  Google Scholar 

  15. D. R. Armstrong, P. G. Perkins, J. J. P. Stewart: J. Chem. Soc. Dalton 838, 2273 (1973).

    Article  Google Scholar 

  16. O. G. Stradella, H. O. Villar, and E. A. Castro: Theor. Chim. Acta 70, 67 (1986).

    Article  CAS  Google Scholar 

  17. N. P. Borisova, and S. G. Semenov: Trans. Leningrad Univ. 16, 119 (1973).

    Google Scholar 

  18. S. G. Semenov: Theory of Valence in Progress, p. 150ff., V. Kuznetzov (Ed.) Mir, Moscow 1980.

    Google Scholar 

  19. K. Jug: J. Comp. Chem. 5, 555 (1984).

    Article  CAS  Google Scholar 

  20. K. Jug: J. Am. Chem. Soc. 99, 7800 (1977).

    Article  CAS  Google Scholar 

  21. K. Jug: J. Am. Chem. Soc. 100, 6581 (1978).

    Article  CAS  Google Scholar 

  22. K. Jug: Theor. Chim. Acta 51, 331 (1979).

    Article  CAS  Google Scholar 

  23. I. Mayer: Chem. Phys. Lett. 97, 270 (1983).

    Article  CAS  Google Scholar 

  24. M. Giambiagi, M. S. de Giambiagi, D. R. Grempel, and C. D. Heynman: J. Chim. Phys. 72, 15(1975).

    CAS  Google Scholar 

  25. I. Mayer: Int. J. Quantum Chem. 29, 73 (1986).

    Article  CAS  Google Scholar 

  26. O. P. Singh, and J. S. Yadav: J. Mol. Struct. (Theochem) 124, 287 (1985).

    Article  CAS  Google Scholar 

  27. J. Baker: Theor. Chim. Acta 68, 221 (1985).

    Article  CAS  Google Scholar 

  28. I. Mayer: Chem. Phys. Lett. 110, 440 (1984).

    Article  CAS  Google Scholar 

  29. M. A. Natiello, and J. A. Medrano: Chem. Phys. Lett. 110, 445 (1984).

    Article  CAS  Google Scholar 

  30. M. A. Natiello, H. F. Reale, and J. A. Medrano: J. Comp. Chem. 6, 108 (1985).

    Article  CAS  Google Scholar 

  31. K. Jug, and D. N. Nanda: Theoret. Chim. Acta 57, 95, 107, 131 (1980).

    Article  Google Scholar 

  32. K. Jug: Tetrahedron Lett. 26,1437 (1985).

    Article  CAS  Google Scholar 

  33. K. Jug, E. Fasold, and M. S. Gopinathan: to be publlshed.

    Google Scholar 

  34. A. E. Reed, and F. Weinhold: J. Am. Chem. Soc. 107, 1919 (1985).

    Article  CAS  Google Scholar 

  35. H. Schiffer, and R. Ahlrichs: Chem. Phys. Lett. 124, 172 (1986).

    Article  CAS  Google Scholar 

  36. K. B. Wiberg, and F. H. Walker: J. Am. Chem. Soc. 104, 5239 (1982).

    Article  CAS  Google Scholar 

  37. K. B. Wiberg: J. Am. Chem. Soc. 105, 1227 (1983).

    Article  CAS  Google Scholar 

  38. K. Jug: Croat. Chem. Acta 57, 941 (1984).

    CAS  Google Scholar 

  39. K. Jug, and S. Buss: J. Comp. Chem. 6, 507 (1985).

    Article  CAS  Google Scholar 

  40. M. S. Gopinathan: Proc. Indian Acad. Sci. (Chem. Sci.) 96, 167 (1986).

    Article  CAS  Google Scholar 

  41. K. Jug: Mathematics and Computational Methods in Chemistry, p. 124ff., Ed. N. Trinajstic, Ellis Horwood, Chicester 1986.

    Google Scholar 

  42. V. Bonacic-Kouteeky, and J. Michl: J. Am. Chem. Soc. 107, 1765 (1985).

    Article  Google Scholar 

  43. H. K. Hall, Jr.: Ang. Chem. Int. Ed. Engl. 22, 440 (1983).

    Article  Google Scholar 

  44. K. Jug: J. Am. Chem. Soc. 109, 3534 (1987).

    Article  CAS  Google Scholar 

  45. T. A. Halgren, D. A. Kleier, J. H. Hall, Jr., L. D. Brown, and W. N. Lipscomb: J. Am. Chem. Soc. 100, 6595 (1978).

    Article  CAS  Google Scholar 

  46. G. D. Graham, D. S. Marynick, and W. N. Lipscomb: J. Am. Chem. Soc. 102, 2939 (1980).

    Article  CAS  Google Scholar 

  47. K. Jug, R. Iffert, and J. Schulz: Int. J. Quantum Chem. 32, 265 (1987).

    Article  CAS  Google Scholar 

  48. K. Jug, and R. Iffert: J. Comp. Chem. 8, 1004 (1987).

    Article  CAS  Google Scholar 

  49. M. S. Gopinathan, P. Siddarth, and C. Ravimohan: Theor. Chim. Acta 70, 303 (1986).

    Article  CAS  Google Scholar 

  50. K. Jug, N. D. Epiotis, and S. Buss: J. Am. Chem. Soc. 108, 3640 (1986).

    Article  CAS  Google Scholar 

  51. N. D. Epiotis: Unified Valence Bond Theory of Electronic Structure, Lecture Notes in Chemistry, Vol. 29, Springer: Berlin-Heidelberg-New York 1982.

    Google Scholar 

  52. N. D. Epiotis: Unified Valence Bond Theory of Electronic Structure, Applications, Lecture Notes in Chemistry, Vol. 34, Springer: Berlin-Heidelberg-New York 1983.

    Google Scholar 

  53. R. B. Woodward, and R. Hoffmann: The Conservation of Orbital Symmetry, Verlag Chemie: Weinheim 1971.

    Google Scholar 

  54. K. Jug, and M. S. Gopinathan: Theor. Chim. Acta 68, 343 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht, The Netherlands

About this chapter

Cite this chapter

Jug, K. (1989). A Valence Concept for Molecular Structure and Reactions. In: Maruani, J. (eds) Molecules in Physics, Chemistry, and Biology. Topics in Molecular Organization and Engineering, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2853-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2853-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7783-5

  • Online ISBN: 978-94-009-2853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics