Skip to main content

A Theoretical Study of the Unimolecular Dissociation of Diborane

  • Chapter
Molecules in Physics, Chemistry, and Biology

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 3))

  • 184 Accesses

Abstract

Presently, we are involved in a theoretical study of the thermal pyrolysis of diborane (B2H6), with an emphasis on the early stages of the reaction. It is generally agreed that the first three elementary reactions which occur in this process are

$$ {{\rm{B}}_2}{{\rm{H}}_6} \to 2{\rm{B}}{{\rm{H}}_3} $$
((1))
$$ {\rm{B}}{{\rm{H}}_3} + {{\rm{B}}_2}{{\rm{H}}_6} \to {{\rm{B}}_3}{{\rm{H}}_9} $$
((2))
$$ {{\rm{B}}_3}{{\rm{H}}_9} \to {{\rm{B}}_3}{{\rm{H}}_7} + {{\rm{H}}_2} $$
((3))

Kinetic studies have shown that the initial reaction rate is 3/2 order in diborane [1], implicating (2) or (3) as the rate-determining step. Results of early investigations by Clark and Pease [2] and by Bragg et al. [3] favored assignment of step (2) as rate limiting. Enrione and Schaeffer [4], however, studied the isotopic dependence of the rate, and found that it was substantially decreased when perdeuterated diborane was used (k H/k D = 5). On the basis of this result, and calculations which indicated that B2D6 was dissociated to a far greater extent than B2H6 under the reaction conditions, it was predicted that (3) represented the rate-limiting process. Preliminary calculations [5], however, have predicted that the activation energy for reaction (2) is larger than that for (3). Efforts to calculate these barriers at very high levels of theory are currently underway. If the results of the more primitive calculations are substantiated in these studies, it is conceivable that (2) represents the true slow step in the reaction sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. P. FehlnerBoron Hydride Chemistry(E. L. Muetterties,ed.), Academic Press (1975).

    Google Scholar 

  2. R. P. Clarkeand R. N. PeaseJ. Am. Chem. Soc73,2132 (1951).

    Article  Google Scholar 

  3. J. K. Bragg,L. V. McCarty,and F. J. NortonJ. Am. Chem. Soc73,2134(1951).

    Article  CAS  Google Scholar 

  4. R. E. Enrioneand R. SchaefferJ. Inorg. Nucl Chem 18,103 (1961).

    Article  CAS  Google Scholar 

  5. M. L. McKeeand W. N. Lipscomb: unpublished study.

    Google Scholar 

  6. M. E.Garabedian and S. W. BensonJ. Am. Chem. Soc86,177 (1964).

    Article  Google Scholar 

  7. J. F. Stanton,R. J. Bartlett,and W. N. LipscombChem. Phys. Lett 138,525 (1987).

    Article  CAS  Google Scholar 

  8. J. F. Stantonand W. N. Lipscomb: unpublished study.

    Google Scholar 

  9. K. A.BreucknerPhys. Rev97,1353; 100,36 (1955).

    Article  Google Scholar 

  10. J. GoldstoneProc. Roy. Soc. (London) A239,267 (1957).

    Google Scholar 

  11. G. D. Purvisand R. J. Bartlett: J. Chem. Phys76,1910 (1982).

    Article  CAS  Google Scholar 

  12. M. Urban,J.Noga,S. J. Cole,and R. J. BartlettJ. Chem. Phys 83,4041 (1985).

    Article  CAS  Google Scholar 

  13. S. Cole andR. J. Barüett: J. Chem.Phys86,873 (1987).

    Article  CAS  Google Scholar 

  14. R. Krishnan,J. S. Binkley,R. Seeger,and J. A. Pople: J. Chem. Phys72,650(1980).

    Article  CAS  Google Scholar 

  15. J. L.Duncan,J. Harper,E. Hamilton,and G. D. Nivellini: J. Mol. Spectr 102,416 (1983).

    Article  CAS  Google Scholar 

  16. A.Kaldor and R. F. PorterJ. Am. Chem. Soc93,2140 (1971).

    Article  CAS  Google Scholar 

  17. D. A.McQuarrieStatisticalMechanicsHarperand Row (1976).

    Google Scholar 

  18. M. Gelus,R.Ahlrichs,V. Staemmler,and W. KutzelniggChem. Phys. Lett7,503 (1970).

    Article  CAS  Google Scholar 

  19. R. AhlrichsTheor.Chim. Acta 35,59 (1974).

    Article  CAS  Google Scholar 

  20. L. T. Redmon,G. D. Purvis,and R. J. BartlettJ. Am. Chem. Soc 101,2856(1979).

    Article  CAS  Google Scholar 

  21. M. L. McKee and W. N. Lipscomb: J.Am. Chem. Soc 103,4673 (1981).

    Article  CAS  Google Scholar 

  22. J. V. Ortiz and W. N. LipscombChem.Phys. Lett 103,59 (1983).

    Article  CAS  Google Scholar 

  23. A. Shepp and S. H. Bauer: J. Am.Chem. Soc76,265 (1954).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht, The Netherlands

About this chapter

Cite this chapter

Stanton, J.F., Bartlett, R.J., Lipscomb, W.N. (1989). A Theoretical Study of the Unimolecular Dissociation of Diborane. In: Maruani, J. (eds) Molecules in Physics, Chemistry, and Biology. Topics in Molecular Organization and Engineering, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2853-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2853-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7783-5

  • Online ISBN: 978-94-009-2853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics