Skip to main content

The Molecule as a Many-Electron System: Electron Densities and Molecular Properties

  • Chapter
Molecules in Physics, Chemistry, and Biology

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 3))

Abstract

A molecule is, in essence, a collection of electrons and (much heavier) nuclei which may exist in certain stationary states, possessing certain invariant geometrical and behavioural features which bestow upon the system a ‘chemical indentity’. The location in space of the various particles is determined only in a statistical sense; every state is characterized by means of a wavefunction Ψ(q1, q2, q3, ...), where q i represents collectively all the variables (or ‘generalized coordinates’) associated with particle i, and |Ψ(q1, q2, q3,...)|2dq1 dq2 dq3 ... gives the probability of finding particle 1 in volume element dq1 enclosing ‘point q1’, particle 2 simultaneously in dq2 at point 2, and so on. In other words | Ψ |2, evaluated for any values of the variables, determines the probability of a corresponding instantaneous ‘configuration’ of the particles. For a system in a stationary state, Ψ contains only a trivial time factor exp(-iEt/ℏ) [where E is the energy of the system and is the rationalized Planck constant (h/2π)] which is usually discarded since it disappears in forming |Ψ|2 (= ΨΨ*) and is of no observational interest. The wavefunction then satisfies the time-independent Schrödinger equation

$$ \hat H{\rm{\psi }} = E{\rm{\psi }} $$
(1.1)

where Ĥ is the Hamiltonian operator, constructed in the usual way [1]. It is only because of the large mass ratio between nuclei and electrons that a molecule has a shape, the nuclei executing comparatively slow ‘internal’ motions around hypothetical equilibrium positions, in the presence of the much lighter and faster moving electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See any textbook on Quantum Mechanics.

    Google Scholar 

  2. M. Born and J. R. Oppenheimer: Ann. Phys. 84, 457 (1927).

    Article  CAS  Google Scholar 

  3. M. Born and K. Huang: Dynamical Theory of Crystal Lattices (Appendix 8) (Oxford University Press, 1954).

    Google Scholar 

  4. C. H. Longuet-Higgins: Adv. Spectroscopy 2, 429 (1961).

    Google Scholar 

  5. G. Fischer: Vibronic Coupling (Academic Press, London, 1984).

    Google Scholar 

  6. K.Hmimi: Proc. Phys. Math. Soc. Japan 22,264 (1940).

    Google Scholar 

  7. R. McWeeny: Proc. Roy. Soc. (London) A223, 63 (1954).

    Google Scholar 

  8. R. McWeeny: Proc. Roy. Soc. (London) A232, 114 (1955).

    Google Scholar 

  9. R. McWeeny: Rev. Mod. Phys. 32, 335 (1960).

    Article  Google Scholar 

  10. P.-O. Löwdin: Phys. Rev. 97, 1474 (1955).

    Article  Google Scholar 

  11. Cohen and C. Frishberg: Phys. Rev. A13, 927 (1976)

    Google Scholar 

  12. Cohen and C. Frishberg: J. Chem. Phys. 65, 4234 (1976).

    Article  CAS  Google Scholar 

  13. H. Nakatsuji: Phys. Rev. A14, 41 (1976).

    Google Scholar 

  14. A. J. Coleman: Rev. Mod. Phys. 35, 668 (1963)

    Article  Google Scholar 

  15. A. J. Coleman: Adv. Quantum Chem. 4, 83 (1981).

    Article  Google Scholar 

  16. E. R. Davidson: Reduced Density Matrices in Quantum Chemistry (Academic Press, New York, 1976).

    Google Scholar 

  17. J. P. Dahl and J. Avery (eds.): Local Density Approximation in Quantum Chemistry and Solid State Physics (Plenum, New York, 1982).

    Google Scholar 

  18. P. Hohenberg and W. Kohn: Phys. Rev. B136, 864 (1964).

    Article  Google Scholar 

  19. R. McWeeny and Y. Mizuno: Proc. Roy. Soc. (London) A259, 554 (1961).

    Google Scholar 

  20. R. McWeeny and B. T. Sutcliffe: Methods of Molecular Quantum Mechanics (Academic Press, London, 1976).

    Google Scholar 

  21. H. M. McConnell: J. Chem. Phys. 28, 1128 (1958)

    Google Scholar 

  22. S. I. Weissman J. Chem. Phys. 25, 890 (1956).

    Article  CAS  Google Scholar 

  23. R. McWeeny: Quantum Mechanics: Methods and Basic Applications (Pergamon, Oxford, 1974).

    Google Scholar 

  24. R. McWeeny: Proc. Indian Acad. Sci. 96, 263 (1986).

    Article  Google Scholar 

  25. J. Hirschfelder: J. Chem. Phys. 67, 5477 (1977).

    Article  CAS  Google Scholar 

  26. P.-O. Löwdin: J. Chem. Phys. 19, 1396 (1951).

    Article  Google Scholar 

  27. P.-O. Löwdin: J. Maths. Phys. 3, 969, 1171 (1962).

    Article  Google Scholar 

  28. S. T. Epstein, A. C. Hurley, R. G. Parr and R. E. Wyatt: J. Chem. Phys. 47, 1275 (1967).

    Article  CAS  Google Scholar 

  29. S. T. Epstein: The Variation Method in Quantum Chemistry.

    Google Scholar 

  30. M. H. L. Pryce: Proc. Phys. Soc. (London) A63, 25 (1950).

    Google Scholar 

  31. J. S. Griffith: The Theory of Transition-Metal Ions (Cambridge University Press, 1961).

    Google Scholar 

  32. R. McWeeny: J. Chem. Phys. 42 ,1717 (1965).

    Article  CAS  Google Scholar 

  33. J. Harriman: Theoretical Foundations of Electron Spin Resonance (Academic Press, New York, 1978).

    Google Scholar 

  34. H. A. Bethe and E. E. Salpeter: Quantum Mechanics of One-and Two-Electron Systems (Springer-Verlag, Berlin, 1957).

    Google Scholar 

  35. R. E. Moss: Advanced Molecular Quantum Mechanics (Chapman and Hall, London ,1973).

    Google Scholar 

  36. T. Itoh, Rev. Mod. Phys. 37, 159 (1965).

    Article  Google Scholar 

  37. R. McWeeny and Y. Mizuno: Proc. Roy. Soc. (London) A259, 554 (1961).

    Google Scholar 

  38. R. McWeeny and B. T. Sutcliffe: Methods of Molecular Quantum Mechanics (2nd ed.) (Academic Press, London), in press).

    Google Scholar 

  39. J. Frenkel: Wave Mechanics: Advanced General Theory (Clarendon Press, Oxford, 1934).

    Google Scholar 

  40. P.-O. Löwdin and P. K. Mukherjee: Chem. Phys. Letters 14, 1 (1972).

    Article  Google Scholar 

  41. P. W. Langhoff ,S. T. Epstein ,and M. Karplus: Rev. Mod. Phys. 44 ,602 (1972).

    Article  CAS  Google Scholar 

  42. R. Moccia: Int. J. Quantum Chem. 7 ,799 (1973).

    Article  Google Scholar 

  43. R. Moccia: Int. J. Quantum Chem. 8 ,293 (1974).

    Article  Google Scholar 

  44. D. L. Yeager and P. Jørgensen: Chem. Phys. Letters 65 ,77 (1979).

    Article  CAS  Google Scholar 

  45. P. Albertson ,P. Jørgensen and D. L. Yeager: Chem. Phys. Letters 16 ,354 (1980)

    Article  Google Scholar 

  46. P. Albertson ,P. Jørgensen and D. L. Yeager: Mol. Phys. 41 ,409 (1980)

    Article  Google Scholar 

  47. P. Albertson ,P. Jørgensen and D. L. Yeager: Int. J. Quantum Chem. Symp. 14 ,289 (1980).

    Google Scholar 

  48. E. Dalgaard: J. Chem. Phys. 72 ,816 (1980).

    Article  CAS  Google Scholar 

  49. R. McWeeny: Int. J. Quantum Chem. 23 ,405 (1983).

    Article  CAS  Google Scholar 

  50. J. Oddershede: Adv. Quantum Chem. 11 ,275 (1978).

    Article  CAS  Google Scholar 

  51. J. Linderberg and Y. Öhrn: Propagators in Quantum Chemistry (Academic Press, New York, 1973).

    Google Scholar 

  52. P. Jørgensen and J. Simons: Second Quantization-Based Methods in Quantum Chemistry (Academic Press, New York, 1982).

    Google Scholar 

  53. M. Jaszunski and R. McWeeny: Mol. Phys. 46, 483 (1982).

    Article  Google Scholar 

  54. R. McWeeny: J. Mol. Struct. (Theochem) 123, 231 (1985).

    Article  Google Scholar 

  55. J. Oddershede, P. Jørgensen and D. L. Yeager: Computer Physics Reports 2, 33 (1984).

    Article  CAS  Google Scholar 

  56. C. A. Coulson and H. C. Longuet-Higgins: Proc. Roy. Soc. (London) A191, 39 (1947).

    Google Scholar 

  57. R. McWeeny: Proc. Roy. Soc. (London) A253, 242 (1959).

    Google Scholar 

  58. R. McWeeny: Croatica Chem. Acta 57, 865 (1984).

    CAS  Google Scholar 

  59. R. McWeeny: Int. J. Quantum Chem. ,to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht, The Netherlands

About this chapter

Cite this chapter

McWeeny, R. (1989). The Molecule as a Many-Electron System: Electron Densities and Molecular Properties. In: Maruani, J. (eds) Molecules in Physics, Chemistry, and Biology. Topics in Molecular Organization and Engineering, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2853-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2853-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7783-5

  • Online ISBN: 978-94-009-2853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics