Skip to main content

The Biochemistry of Manganese in Plants

  • Chapter

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 33))

Abstract

In plants Mn has a role in many biochemical processes. However, unlike other essential trace elements such as Cu, Zn, Fe and Mo which are usually integral components of enzymes, Mn usually acts as an activator of enzymes and is often able to be replaced by other metal ions. Manganese resembles Mg in its biochemical function and is involved in activating enzyme-catalysed reactions including phosphorylations, decarboxylations, reductions and hydrolysis reactions and therefore affects processes such as respiration, amino acid synthesis, lignin biosynthesis and the level of hormones in plants. A list of plant enzymes which have been reported to be activated by Mn is given in Table 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amberger A 1973 Die rolle des mangans im stoffwechel der pflanzen. Agrochimica 17,69–83

    Google Scholar 

  2. Amesz J 1983 The role of manganese in photosynthetic oxygen evolution. Biochim. Biophys. Acta 726, 1–12

    CAS  Google Scholar 

  3. Arron GP, Henry L, Palmer JM and Hall DO 1976 Superoxide dismutase in mitochondria from Helianthus tuberosus and Neurospora crassa. Biochem. Soc. Trans. 4,618–620

    PubMed  CAS  Google Scholar 

  4. Asada K, Urano M and Takahashi M 1973 Subcellular localization of superoxide dismutase in spinach leaves and preparation and properties of crystalline spinach superoxide dismutase. Eur. J. Biochem. 36, 257–266

    PubMed  CAS  Google Scholar 

  5. Askerlund P, Larsson C, Widell S and Moller IM 1987 NADP(H) oxidase and peroxidase activity in purified plasma membranes from cauliflower inflorescences. Physiol. Plant. 71,9–19

    CAS  Google Scholar 

  6. Babcock GT 1987 The photosynthetic oxygen-evolving process. In Photosynthesis in New Comparative Biochemistry vol.15,125–158

    Google Scholar 

  7. Baum JA and Scandalios JG 1979 Developmental expression and intracellular localization of superoxide dismutase in maize. Differentiation 13,133–140

    CAS  Google Scholar 

  8. Bishop T, Powles SB and Cornic G 1987 Mechanism of paraquat resistance in Hordeum glaucum. II. Paraquat uptake and translocation. Aust. J. Plant Physiol. 14,81–89

    Google Scholar 

  9. Black CC 1973 Photosynthetic carbon fixation in relation to net CO2 uptake. Ann. Rev. Plant Physiol. 24, 253–286

    CAS  Google Scholar 

  10. Bromfield SM 1978 The oxidation of manganous ions under acid conditions by an acidophilous actinomycete from acid soil. Aust. J. Soil Sci. 16, 91–100

    CAS  Google Scholar 

  11. Burnell JN 1986 Purification and properties of phosphoenolpyruvate carboxykinase from C4 plants. Aust. J. Plant Physiol. 13, 577–587

    CAS  Google Scholar 

  12. Burnell JN 1987 Photosynthesis in phosphoenolpyruvate carboxykinase-type C4 plants. Properties of NAD-malic enzyme from Urochloa panicoides. Aust. J. Plant Physiol. 14, 517–525

    CAS  Google Scholar 

  13. Burnell JN and Hatch MD 1988 Photosynthesis in phosphoenolpyruvate carboxykinase type C4 plants. Photosynthetic activities of isolated bundle sheath cells from Urochloa panicoides. Arch. Biochem. Biophys. 260, 177–186

    PubMed  CAS  Google Scholar 

  14. Burnell JN and Hatch MD 1987 Photosynthesis in phosphoenolpyruvate carboxykinase type C4 plants. Pathways of C4 acid decarboxylation in bundle sheath cells of Urochloa panicoides. Arch. Biochem. Biophys. 260, 188–199

    Google Scholar 

  15. Cheng CKC and Marsh HV 1968 Gibberellic acid-promoted lignification and phenylalanine ammonia-lyase activity in dwarf pea (Pisum sativum). Plant Physiol. 43, 1755–1759

    PubMed  CAS  Google Scholar 

  16. Cheniae GM 1970 Photosystem II and oxygen evolution Ann. Rev. Plant Physiol. 21,467–498

    CAS  Google Scholar 

  17. Cheniae GM and Martin IF 1968 Site of manganese function in photosynthesis. Biochim. Biophys. Acta 153, 819–837

    PubMed  CAS  Google Scholar 

  18. Chia LS, Thompson JE and Dumbroff EM 1981 Simulation of the effects of leaf senescence on membranes by treatment with paraquat. Plant Physiol. 67,415–420

    PubMed  CAS  Google Scholar 

  19. Christeller JT and Laing WA 1979 Effects of manganese ions and magnesium ions on the activity of soya-bean ribulose bisphosphate carboxylase/oxygenase. Biochem. J. 183,747–750

    PubMed  CAS  Google Scholar 

  20. Clarke CJ, Carrington L, De Jersey J and Zerner B 1987 Plant purple acid phosphatases. Proc. Aust. Biochem. Soc. p. 22

    Google Scholar 

  21. Coultate TP and Dennis DT 1969 Regulatory properties of a plant NAD:isocitrate dehydrogenase. The effect of inorganic ions. Eur. J. Biochem. 7,153–158.

    PubMed  CAS  Google Scholar 

  22. Del Rio LA, Lyon DS, Olah I, Glick B and Salin ML 1983 Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant. Planta 15, 216–224

    Google Scholar 

  23. Diekert JW and Rozacky E 1969 Isolation and partial characterization of manganin, a new manganoprotein from peanut seeds. Arch. Biochem. Biophys. 134,473–477

    Google Scholar 

  24. Durst F 1976 The correlation of phenylalanine ammonia-lyase and cinnamic acid-hydroxylase activity changes in Jerusalem artichoke tube tissues. Planta 132,221–227

    CAS  Google Scholar 

  25. Ecker JR and Davis RW 1987 Plant defense genes are regulated by ethylene. Proc. Nat. Acad. Sci. U.S. 84, 5202–5206

    CAS  Google Scholar 

  26. Elstner EF and Heupel A 1976 Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib). Planta, 130,175–180

    CAS  Google Scholar 

  27. Engelsma G 1972 A possible role of divalent manganese ions in the photoinduction of phenylalanine ammonia-lyase. Plant Physiol. 50, 599–602

    PubMed  CAS  Google Scholar 

  28. Fedtke C 1982 Biochemistry and Physiology of Herbicide Action. Springer Verlag, Berlin p 202

    Google Scholar 

  29. Fernandez VM, Sevilla F, Gorge JL and Del Rio LA 1982 Evidence for manganese(III) binding to the mangano superoxide dismutase from a higher plant (Pisum sativum L) J. Inorg. Biochem. 16, 79–84

    CAS  Google Scholar 

  30. Foster JG and Edwards GE 1980 Localization of superoxide dismutase in leaves of C3 and C4 plants. Plant Cell Physiol. 21, 895–906

    CAS  Google Scholar 

  31. Fridovich I 1983 Superoxide radical: an endogenous toxicant. Ann. Rev. Pharmacol. Toxicol. 23,239–259

    CAS  Google Scholar 

  32. Friend J 1978 Phenolic substances and plant disease. Rec. Adv. Phytochem. 12, 557–588

    Google Scholar 

  33. Friend J 1981 Plant phenolics, lignification and plant disease. Prog. in Phytochem. 7, 197–261

    CAS  Google Scholar 

  34. Furst EP, Nakatani HY, Dodge AD, Penner D and Arntzen C 1985 Paraquat resistance in Conyza. Plant Physiol. 77, 984–989

    Google Scholar 

  35. Fujimoto S, Nakagawa T, Ishimitsu S and Ohara A 1977 Purification and some properties of violet-colored acid phosphatase from spinach leaves. Chem. Pharm. Bull. 25,1459–1462

    CAS  Google Scholar 

  36. Fujimoto S, Nakagawa T and Ohara A 1977 Isolation of violet-colored acid phosphatase from soybean. Agric. Biol. Chem. 41, 599–600

    CAS  Google Scholar 

  37. Fujimoto S, Ohara A and Uehara K 1980 Carbohydrate and metal analyses of violet-colored acid phosphatase of sweet potato. Agric. Biol. Chem. 44,1659–1660

    CAS  Google Scholar 

  38. Galston AW and Davies PJ 1969 Hormonal regulation in higher plants. Science 163,1288–1297

    PubMed  CAS  Google Scholar 

  39. Galston AW and Hillman WS 1961 The degradation of auxin. In Encyclopedia of Plant Physiology. Ed. W Ruhland. Vol. 14, pp 647–670. Springer Verlag, Berlin

    Google Scholar 

  40. Ganson RJ, D’Amato TA and Jensen RA 1986 The two-isozyme system of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase in Nicotiana silvestris and other higher plants. Plant Physiol. 82, 203–210

    PubMed  CAS  Google Scholar 

  41. Ganson RJ and Jensen RA 1987 Response of cytosolic-isozyme and plastid-isozyme levels of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase to physiological state of Nicotiana silvestris in suspension culture. Plant Physiol. 83, 479–482

    PubMed  CAS  Google Scholar 

  42. Graham RD 1983 Effects of nutrient stress on susceptibility of plants to disease with particular reference to the trace elements. Adv. Bot. Res. 10,221–276

    CAS  Google Scholar 

  43. Gross GG 1977 Cell wall-bound malate dehydrogenase from horse radish. Phytochemistry 16,319–321

    CAS  Google Scholar 

  44. Gross GG 1980 The biochemistry of lignification. Adv. Bot. Res. 8,26–63

    Google Scholar 

  45. Gross GG, Janse C and Elstner EF 1977 Involvement of malate, monophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib). Planta 136,271–276

    CAS  Google Scholar 

  46. Hahlbrock K and Grisebach H 1979 Enzymic controls in the biosynthesis of lignin and flavonoids. Ann. Rev. Plant Physiol. 30, 105–130

    CAS  Google Scholar 

  47. Halliwell B 1984 Chloroplast metabolism. The structure and function of chloroplasts in green leaf cells. Oxford Science Publications

    Google Scholar 

  48. Harkin JM and Obst JR 1973 Lignification in trees: indication of exclusive peroxidase participation. Science 180,296–298

    PubMed  CAS  Google Scholar 

  49. Harris JI, Auffret AD, Northrop FD and Walker JE 1980 Structural comparisons of superoxide dismutases. Eur. J. Biochem. 106,297–303

    PubMed  CAS  Google Scholar 

  50. Hatch MD 1971 Mechanism and function of the C4 pathway of photosynthesis. In Photosynthesis and Photorespiration Eds. MD Hatch, CB Osmond and RO Slatyer pp 139–152. Wiley Interscience, New York

    Google Scholar 

  51. Hatch MD, Mau SL and Kagawa T 1974 Properties of leaf NAD malic enzyme from plants with C4 pathway photosynthesis. Arch. Biochem. Biophys. 165,188–200

    PubMed  CAS  Google Scholar 

  52. Hatch MD and Mau SL 1977 Properties of phosphoenolpyruvate carboxykinase operative in C4 pathway photosynthesis. Aust. J. Plant Physiol. 4, 207–216

    CAS  Google Scholar 

  53. Hatch MD, Tsuzuki M and Edwards GE 1982 Determination of NAD malic enzyme in leaves of C4 plants. Effects of malate dehydrogenase and other factors. Plant Physiol. 69,483–491

    PubMed  CAS  Google Scholar 

  54. Hayakawa T, Kanematsu S and Asada K 1985 Purification and characterization of thylakoid-bound Mn-superoxide dismutase in spinach chloroplasts. Planta 166,111–116

    CAS  Google Scholar 

  55. Haystead A 1973 Glutamine synthetase in the chloroplasts of Vicia faba. Planta 111, 271–274

    CAS  Google Scholar 

  56. Heiler SK and Averill BA 1987 The ‘manganese(III)-containing’ purple acid phosphatase from sweet potatoes is an iron enzyme. Biochem. Biophys. Res. Commun. 146,1173–1177

    Google Scholar 

  57. Hellerman L and Stock CC 1938 The specificity of arginase and the non-enzymatic hydrolysis of guanidino compounds. Activating metal ions and liver arginase. J. Biol. Chem. 125,771–793

    CAS  Google Scholar 

  58. Hewitt EJ 1970 Physiological and biochemical factors which control the assimilation of inorganic nitrogen supplies by plants. In Nitrogen Nutrition of the Plant. Ed. EA Kirkby. pp 78–103. The University of Leeds

    Google Scholar 

  59. Igaue I, Watanabe H, Takahashi K, Takekoshi M and Morota A 1976 Violet-colored acid phosphatase isoenzyme associated with cell wall preparations from rice plant cultured cells. Agric. Biol. Chem. 40, 823–825

    CAS  Google Scholar 

  60. Jackson C, Dench J, Moore AL, Halliwell B, Foyer CH and Hall DO 1978 Subcellular localization and identification of superoxide dismutase in the leaves of higher plants. Eur. J. Biochem. 91, 339–344

    PubMed  CAS  Google Scholar 

  61. Johnson HS and Hatch MD 1970 Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and malic enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis. Biochem. J. 119, 273–280

    PubMed  CAS  Google Scholar 

  62. Jones LH, Shepardson WB and Peters CA 1949 The function of manganese in the assimilation of nitrates. Plant Physiol. 24,300–306

    PubMed  CAS  Google Scholar 

  63. Kanematsu S and Asada K 1979 Ferric and manganic superoxide dismutases in Eugaena gracilis. Arch. Biochem. Biophys. 195,535–545

    PubMed  CAS  Google Scholar 

  64. Renten RH 1955 The oxidation of indolyl-3-acetic acid by waxpod bean root sap and peroxidase systems. Biochem. J. 59,110–121

    Google Scholar 

  65. Kenten RH and Mann PJG 1949 The oxidation of manganese by plant extracts in the presence of hydrogen peroxide. Biochem. J. 45, 255–263

    PubMed  CAS  Google Scholar 

  66. Deleted

    Google Scholar 

  67. Kido T, Asada K and Soda K 1982 Oxidation of 2-nitropropane by various flavoenzymes. In: Superoxide Dismutase, Superoxide and Oxy Radicals. Biochemical Aspects. Ed. G Cohen and RA Greenwald. Elsevier Biomedical Press. Amsterdam

    Google Scholar 

  68. Kreidemann PE and Anderson JE 1988 Growth and photosynthetic responses to manganese and copper deficiencies in wheat (Triticum aestivum) and barley grass (Hordeum glaucum). Aust. J. Plant Physiol. In press

    Google Scholar 

  69. Kreidemann PE, Graham RD and Wiskich JT 1985 Photosynthetic dysfunction and in vivo changes in chlorophyll a fluorescence from manganese-deficient wheat leaves. Aust. J. Agric. Res. 36,157–169

    Google Scholar 

  70. Lagoutte B and Duranton J 1975 A manganese protein complex within the chloroplast structures. FEBS Lett. 51, 1

    Google Scholar 

  71. Lastra O, Gomez M, Lopez-Gorge J and Del Rio LA 1982 Catalase activity and isozyme pattern of the metalloenzyme system, superoxide dismutase, as a function of leaf development during growth of Pisum sativum L. plants. Physiol. Plant. 55, 209–213

    CAS  Google Scholar 

  72. Leidi EO, Gomez M and Del Rio LA 1987 Evaluation of biochemical indicators of Fe and Mn nutrition for soybean plants. II. Superoxide dismutases, chlorophyll contents and photosystem II activity. J. Plant Nutr. 10, 261–271

    CAS  Google Scholar 

  73. Lengfelder E and Elstner EF 1979 Cyanide insensitive iron superoxide dismutase in Euglena gracilis. Comparison of the reliabilities of different test systems for superoxide dismutases. Z. Naturforsch. 34, 374–380

    Google Scholar 

  74. MacLachlan GA and Waygood ER 1956 Catalysis of indole acetic acid oxidation by manganic ions. Physiol. Plant. 9, 321–330

    CAS  Google Scholar 

  75. Maloney RJ and Dennis DT 1978 The role of divalent cations in the activation of the NADP-specific isocitrate dehydrogenase from Pisum sativum L. Can. J. Biochem. 55,928–934

    Google Scholar 

  76. Mercer FV, Nittim M and Possingham JV 1962 The effect of manganese deficiency on the structure of spinach chloroplasts. J. Cell Biol. 15, 379–381

    PubMed  CAS  Google Scholar 

  77. Michelson AM, McCord J and Fridovich I 1977 Superoxide and Superoxide Dismutases. Academic Press, New York

    Google Scholar 

  78. Miflin BJ and Lea PJ 1976 The pathway of nitrogen assimilation in plants. Phytochemistry 15, 873–885

    CAS  Google Scholar 

  79. Morgan PW, Taylor DM and Joham HE 1976 Manipulation of IAA-oxidase activity and auxin deficiency symptoms in intact cotton plants with manganese nutrition. Physiol. Plant. 37, 149–156

    CAS  Google Scholar 

  80. Nason A and McElroy WD 1963 Modes of action of the essential mineral elements. In Plant Physiology: A Treatise. Vol. 3, Inorganic Nutrition of Plants, pp 451–536

    Google Scholar 

  81. Okada S, Kanematsu S and Asada K 1979 Intracellular distribution of manganic and ferric superoxide dismutases in blue-green algae. FEBS Lett. 103,106–110

    CAS  Google Scholar 

  82. O’Leary MH 1982 Phosphoenolpyruvate carboxylase: an enzymologist’s view. Ann. Rev. Plant Physiol.33, 297–315

    Google Scholar 

  83. O’Leary MH, Rife JE and Slater JD 1981 Kinetic and isotope effect studies of maize phosphoenolpyruvate carboxylase. Biochemistry 20,7308–7314

    PubMed  Google Scholar 

  84. O’Neal D and Joy KW 1973 Glutamine synthetase of pea leaves I. Purification, stabilization and pH optima. Arch. Biochem. Biophys. 159, 113–122

    PubMed  Google Scholar 

  85. O’Neal D and Joy KW 1974 Glutamine synthetase of pea leaves. Divalent cation effects, substrate specificity, and other properties. Plant Physiol. 54,773–779

    PubMed  Google Scholar 

  86. Palma JM, Sandalio LM and Del Rio LA 1986 Manganese superoxide dismutase and higher plant chloroplasts: A reappraisal of a controverted cellular localization. J. Plant Physiol. 125,427–439

    CAS  Google Scholar 

  87. Pegg GF 1976 The involvement of ethylene in plant pathogenesis. In Encyclopedia of Plant Physiology, Eds. R Hetefuss and PH Williams, pp 582–591. Springer, New York

    Google Scholar 

  88. Possingham JV, Vesk M and Mercer FV 1964 The fine structure of leaf cells of manganese-deficient spinach. J. Ultrastruct. Res. 11, 68–83

    CAS  Google Scholar 

  89. Powles SB and Cornic G 1987 Mechanism of paraquat resistance in Hordeum glaucum. Studies with isolated organelles and enzymes. Aust. J. Plant Physiol. 14,81–89

    CAS  Google Scholar 

  90. Prince RC 1986 Manganese at the active site of the chloroplast oxygen-evolving complex. Trends in Biochem. Sci. 132,491–492

    Google Scholar 

  91. Rabinowitch HD and Fridovich I 1983 Superoxide radicals, superoxide dismutases and oxygen toxicity in plants. Photochem. Photobiol. 37, 679–690

    Google Scholar 

  92. Rainbird RM, Thorne JH and Hardy RFW 1984 Role of amides, amino acids, and ureides in the nutrition of developing soybean seeds. Plant Physiol. 74, 329–334

    PubMed  CAS  Google Scholar 

  93. Rhodes MJC and Wooltorton LSC 1973 Stimulation of phenolic acid and lignin biosynthesis in swede root tissue by ethylene. Phytochemistry 12, 107–118

    CAS  Google Scholar 

  94. Ringe D, Petsko GA, Yamakura F, Suzuki K and Ohmori D 1983 Structure of iron superoxide dismutase from Pseudomonas ovalis at 2.9-A resolution. Proc. Natl. Acad. Sci. U.S.A. 80, 3879–3883

    PubMed  CAS  Google Scholar 

  95. Robinson SP, McNeil PH and Walker DA 1979 Ribulose bisphosphate carboxylase — lack of dark inactivation of the enzyme in experiments with protoplasts. FEBS Lett. 97,296–300

    PubMed  CAS  Google Scholar 

  96. Robinson JM, Smith MG and Gibbs M 1980 Influence of hydrogen peroxide upon carbon dioxide photoassimilation in the spinach chloroplast. Plant Physiol. 65, 755–759

    PubMed  CAS  Google Scholar 

  97. Rubery PH and Fosket DE 1969 Changes in phenylalanine ammonia-lyase activity during xylem differentiation in Coleus and soybean. Planta 87,54–62

    CAS  Google Scholar 

  98. Sadasivan TS 1965 Effect of mineral nutrients on soil microoranisms and plant disease. In Ecology of Soil-Borne Plant Pathogens, pp 460–469. Univ. California Press, California

    Google Scholar 

  99. Salin ML and Bridges SM 1981 Absence of the iron-containing superoxide dismutase from a higher plant. Purification of a new Mn-containing enzyme. Biochem. J. 195,229–233

    PubMed  CAS  Google Scholar 

  100. Sandalio LM, Palma JM and Del Rio LA 1987 Localization of manganese superoxide dismutase in peroxisomes isolated from Pisum sativum L. Plant Science 51,1–8

    CAS  Google Scholar 

  101. Sequeria L 1983 Mechanism of induced resistance in plants. Ann. Rev. Microbiol. 37,51–79

    Google Scholar 

  102. Sevilla F, Lopez-Gorge J, Gomez M and Del Rio LA 1980 Manganese superoxide dismutase from a higher plant. Purification of a new Mn-containing enzyme. Planta 150,153–157

    CAS  Google Scholar 

  103. Sevilla F, Lopez-Gorge J and Del Rio LA 1982 Characterization of a manganese superoxide dismutase from the higher plant Pisum sativum. Plant Physiol. 70, 1321–1326

    PubMed  CAS  Google Scholar 

  104. Shaaltiel Y and Gressel J 1986 Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis. Pestic. Biochem. Physiol. 26, 22–28

    CAS  Google Scholar 

  105. Siegel SM 1954 Studies on the biosynthesis of lignins. Physiol. Plant. 7,41–49

    CAS  Google Scholar 

  106. Stafford HA 1974 Possible multienzyme complexes regulating the formation of C6-C3 phenolic compounds and lignins in higher plants. Rec. Adv. Phytochem. 8, 53–79

    CAS  Google Scholar 

  107. Stafford HA 1974 The metabolism of aromatic compounds. Ann. Rev. Plant Physiol. 25,459–468

    CAS  Google Scholar 

  108. Stallings WC, Pattridge KA, Strong RK and Ludwig ML 1984 Manganese and iron superoxide dismutases are structural homologs. J. Biol. Chem. 259, 10695–10699

    PubMed  CAS  Google Scholar 

  109. Stallings WC, Poweres TB, Pattridge KA, Fee JA and Ludwig ML 1983 Iron superoxide dismutase from Escherichia coli at 3.1-A resolution: a structure unlike that of Cu/Zn protein at both monomer and dimer levels. Proc. Natl. Acad. Sci. U.S.A. 80, 3884–3888

    PubMed  CAS  Google Scholar 

  110. Sugiura Y, Kawabe H and Tanaka H 1980 New manganese (III)-containing acid phosphatase. Evidence for an intense charge-transfer band and tyrosine phenolate coordination. J. Am. Chem. Soc. 102,6581–6582

    CAS  Google Scholar 

  111. Sugiura Y, Kawabe H, Tanaka H, Fujimoto S and Ohara A 1981 Purification, enzymatic properties, and active site environment of a novel manganese (III)-containing acid phosphatase. J. Biol. Chem. 256, 10664–10670

    PubMed  CAS  Google Scholar 

  112. Taylor DM, Morgan PM, Joham HE and Amin JV 1968 Influence of substrate and tissue manganese on the IAA-oxidase system in cotton. Plant Physiol. 43, 243–247

    PubMed  CAS  Google Scholar 

  113. Theg SM and Sayre RT 1979 Characterization of chloroplast manganese by electron paramagnetic resonance spectroscopy. Plant Sci. Lett. 16,319–326

    CAS  Google Scholar 

  114. Tolbert NE and Essner E 1981 Microbodies: peroxisomes and glyoxysomes. J. Cell Biol. 91, 271–283

    CAS  Google Scholar 

  115. Tomlinson JD and Turner JF 1973 Pyruvate kinase of higher plants. Biochim. Biophys. Acta 329, 128–139

    CAS  Google Scholar 

  116. Wagenkneckt AC and Burris RH 1950 Indole acetic acid inactivating enzymes from bean roots and pea seedlings. Arch. Biochem. Biophys. 25,30–53

    Google Scholar 

  117. Waygood ER, Oaks A and MacLachlan GA 1956 The enzymically catalysed oxidation of indoleacetic acid. Can J. Bot. 34, 905–926

    CAS  Google Scholar 

  118. Wedding RT and Black MK 1983 Physical and kinetic properties and regulation of the NAD malic enzyme purified from leaves of Crassula argenta. Plant Physiol. 72,1021–1028

    PubMed  CAS  Google Scholar 

  119. White J and Scandalios JG 1987 The compartmentalization of the maize manganese superoxide dismutase (SOD-3). Plant Physiol. Supp. p. 106

    Google Scholar 

  120. Winkler RG, Polacco JC, Blevins DG and Randall DD 1985 Enzymic degradation of allantoate in developing soybeans. Plant Physiol. 79,787–793

    PubMed  CAS  Google Scholar 

  121. Winkler RG, Polacco JC, Randall DD and Blevins DG 1984 Allantoate breakdown in developing soybeans. Plant Physiol. 75, S–30

    Google Scholar 

  122. Winterbourn CC 1981 Production of hydroxyl radicals from paraquat radicals and H2O2. FEBS Lett. 129, 339–342

    Google Scholar 

  123. Yamada Y, Tang XS, Itah S and Satoh K 1987 Purification and properties of an oxygen-evolving photosystem II reaction-center complex from spinach. Biochim. Biophys. Acta 891,129–137

    CAS  Google Scholar 

  124. Yemm EW and Folkes BF 1958 The metabolism of amino acids and proteins in plants. Ann. Rev. Plant Physiol. 9, 245–280

    CAS  Google Scholar 

  125. Yocum CF, Yerkes CT, Blankenship RE, Sharp RR and Babcock GT 1981 Stoichiometry, inhibitor sensitivity, and organization of manganese associated with photosynthetic oxygen evolution. Proc. Natl. Acad. Sci. U.S.A. 78, 7507–7511

    PubMed  CAS  Google Scholar 

  126. Youngman RJ and Dodge AD 1981 On the mechanism of paraquat resistance in Conyza sp. In Photosynthesis VI. Photosynthesis and Productivity, Photosynthesis and Environment. Ed. G Akoyunoglou pp 537–543. Balaban International Science Services, Philadelphia

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Burnell, J.N. (1988). The Biochemistry of Manganese in Plants. In: Graham, R.D., Hannam, R.J., Uren, N.C. (eds) Manganese in Soils and Plants. Developments in Plant and Soil Sciences, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2817-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2817-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7768-2

  • Online ISBN: 978-94-009-2817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics