Skip to main content

Basic Concepts in Heat Exchanger Network Modelling

  • Chapter
Fouling Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 145))

Abstract

Increasing energy costs have made it imperative to ensure that as little energy as possible is consumed by a chemical plant. Despite the recent fall in the cost of oil, it seems certain that the general trend in energy costs over the next few years will be steadily upward, and so design techniques which can produce energy-efficient plant are of paramount importance. Recent developments in process synthesis -defined by (1) as “the act of determining the optimal interconnection of processing units as well as the optimal type and design of the units within a process system” -have resulted in large cost savings, but have not considered the effects of fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nisheda N, Stephanopulos G and Westerberg AW: A review of process synthesis. AIChE.J. 27 3 321. 1981.

    Article  Google Scholar 

  2. Umeda T: Computer aided process synthesis. Comp.Chem.Eng. 7 4 279. 1983.

    Article  CAS  Google Scholar 

  3. Linnhoff B, Townsend DW, Boland D, Hewitt GF, Thomas BEA,Guy AR, Marsland RH: Process Integration for the efficient use of energy. IChemE. 1982.

    Google Scholar 

  4. Masso AH and Rudd DH: The synthesis of system design, II: the heuristic structuring. AIChE.J. 1969.

    Google Scholar 

  5. Rathore RNS and Powers GJ: A forward branching scheme for the synthesis of energy recovery networks. Ind.Eng.Chem. Proc. Des. Dev. 14 175. 1975.

    Article  CAS  Google Scholar 

  6. Fryer PJ: The fouling of heat exchanger networks, this conference, 1988.

    Google Scholar 

  7. Westerberg AW and Grossmann IE: Process synthesis techniques in the process industries and their impact on energy use. EPRI Report. 1985.

    Google Scholar 

  8. Ponton JW and Donaldson RAB: A fast method for the synthesis of optimal heat exchanger networks. Chem.Eng.Sci. 29, 2375. 1974.

    Article  CAS  Google Scholar 

  9. Donaldson RAB, Paterson WR and Ponton JW: Design of complex heat recovery networks: synthesis, simulation and uncertainty. IChemE. Symp.Ser. No.40. 15–1. 1976.

    Google Scholar 

  10. Lee KF, Masso AH, and Rudd DF: Branch and bound synthesis of integrated process designs. Ind.Eng.Chem.Fund. 9 48. 1970.

    Article  CAS  Google Scholar 

  11. Shah JV and Westerberg AW: Evolutionary synthesis of heat exchanger networks. AIChE Annual Meeting, Los Angeles. 1975.

    Google Scholar 

  12. Pho TK and Lapidus L: Topics on computer aided design. II. Synthesis of optimal heat exchanger networks by tree searhing algorithms. AIChE.J. 19 1182. 1973.

    Article  CAS  Google Scholar 

  13. Nisheda N, Liu YA and Lapidus L: Studies in Chemical Process Design and Synthesis-III. A simple and practical approach to the optimal synthesis of heat exchanger networks. AIChE.J. 23 77. 1977.

    Article  Google Scholar 

  14. Hohmann EC: Optimum networks for heat exchange. PhD Thesis, Univ. Southern California. 1971.

    Google Scholar 

  15. Linnhoff B and Flower JR: Synthesis of heat exchanger networks, Parts I and II, AIChE. J. 24 633–654. 1978.

    CAS  Google Scholar 

  16. Linnhoff B and Flower JR: Synthesis of heat exchanger networks, Parts I and II, AIChE. J. 24 633–654. 1978.

    CAS  Google Scholar 

  17. Linnhoff B and Hindmarsh E: The pinch design method for heat exchanger networks. Chem. Eng. Sci. 38 745. 1983.

    Article  CAS  Google Scholar 

  18. Linnhoff B and Turner JA: Heat-recovery networks: insights yield big savings. Chem. Engng. 56. 1981.

    Google Scholar 

  19. Townsend DW and Linnhoff B: Surface area targets for heat exchanger networks. IChemE Annual Research Meeting 1984.

    Google Scholar 

  20. Ahmad S and Linnhoff B: Overall cost targets for heat exchanger networks. IChemE Annual Research Meeting 1984.

    Google Scholar 

  21. Fisher WR and Douglas JM: Analysis of process operability at the preliminary design stage. Comp.Chem.Eng. 9 499. 1985.

    Article  CAS  Google Scholar 

  22. Marsell DF, Morari M and Rudd DF: Design of resilient processing plants-II. Design and control of energy management systems. Chem.Eng.Sci. 37 259. 1983.

    Google Scholar 

  23. Saboo AK: Synthesis and analysis of resilient heat exchanger networks. PhD Thesis, Univ. of Wisconsin, Madison. 1984.

    Google Scholar 

  24. Saboo AK, Morari M and Woodcock DC: Design of resilient process plants-VIII A resilience index for heat exchanger networks. Chem.Eng.Sci. 39 1553. 1985.

    Google Scholar 

  25. Morari M: Design of resilient process plants-Ill A general framework for the assessment of dynamic resilience. Chem.Eng. Sci. 38 1881. 1983.

    Article  Google Scholar 

  26. Grossmann IE and Morari M: Operability, resiliency and flexibility-process design objectives for a changing world. Proc. Second Int. Conf. Foundations of Computer-aided Process Design, Snowmass, Colorado. 1983

    Google Scholar 

  27. Morari M and Skogestad S: Effect of model uncertainty on dynamic resilience. PSE-85, I.Chem.E.Symp.Ser. No 92. 493. 1985.

    Google Scholar 

  28. Saboo AK and Morari M: Design of Resilient processing plants-Ill. Some new results on heat exchanger network synthesis. Chem.Eng.Sci. 39. 579. 1984.

    Article  CAS  Google Scholar 

  29. Townsend DW and Morari M: Resiliency of heat exchanger networks: an objective compatible with minimum cost. AIChE. Ann. Meeting, San Francisco. 1984.

    Google Scholar 

  30. Beautyman AC and Cornish ARH: The design of flexible heat exchanger networks. First UK Heat Transfer Conf., IChemE Symp. Ser. No 86, 547 1984.

    Google Scholar 

  31. Westerberg AW and Chen Bingzhen: Structural flexibility of heat exchanger distillation columns. PSE-85, I.Chem.E.Symp.Ser. No 92. 607. 1985.

    Google Scholar 

  32. Swaney RE and Grossmann IE: An index for operational flexibility in chemical process design. AIChE J. 31 621. 1985.

    Article  CAS  Google Scholar 

  33. Floudas CA, Ciric AR and Grossmann IE: Automatic Synthesis of optimum heat exchanger configurations. AIChE.J. 32 276. 1986.

    Article  CAS  Google Scholar 

  34. Kotjabasaskis E and Linnhoff B: Sensitivity tables for the design of flexible processes (1) — How much contingency in heat exchanger networks is cost-effective? Chem.Eng.Res.Des, 64 197. 1986.

    Google Scholar 

  35. Kotjabasaskis E and Linnhoff B: Process design for flexibility: an optimal overdesign strategy for fouling and multiple base cases. Process Optimisation Conf., Nottingham. 1987.

    Google Scholar 

  36. Merry H and Polley GT: Obtaining valid data on fouling resistance. In “Fouling of Heat Transfer Equipment”, ed E.F.C. Somerscales and J.G. Knudsen, McGraw Hill. 83. 1981.

    Google Scholar 

  37. Somerscales EFC: The fouling of heat transfer equipment. In “Fouling of Heat Transfer Equipment”, ed E.F.C. Somerscales and J.G. Knudsen, McGraw Hill. 1. 1981.

    Google Scholar 

  38. Epstein N: Fouling in heat exchangers. Proceedings of the 6th Int. Heat Transfer Conf., Vol 6. 1978.

    Google Scholar 

  39. Epstein N: Fouling: technical aspects (afterword to fouling in heat exchangers). In “Fouling of Heat Transfer Equipment”, ed E.F.C. Somerscales and J.G. Knudsen, McGraw Hill. 31. 1981.

    Google Scholar 

  40. Knudsen JG: Fouling of heat exchangers: are we solving the problem? Kern Award Lecture, 21st Nat.Heat.Transf.Conf. Seattle. 1983.

    Google Scholar 

  41. Sha WT: Numerical modelling of heat exchangers. In “Handbook of heat and mass transfer — Vol 1” ed NP Cheremisinoff, Gulf. 815 1986.

    Google Scholar 

  42. deBruijn H and Zijl W: Numerical simulation of shell-side flow and temperature distribution in heat exchangers. In “Handbook of heat and mass transfer — Vol 1” ed NP Cheremisinoff, Gulf. 853 1986.

    Google Scholar 

  43. Clampett JB: Relative effect of deposited scale on transfer of heat to salt water. J.Inst.Eng.Aust. 123. 1965.

    Google Scholar 

  44. Hoffman EJ: Fouling rates from the theory of simultaneous heat and mass transfer. AIChE Ann. Meeting, Washington. 1969.

    Google Scholar 

  45. Hausler RH and Thalmeyer CE: Fouling and corrosion in feed effluent exchangers: discussion of a new test method. API refining meeting, Chicago. 1975.

    Google Scholar 

  46. Chiapatta LM and Szetela EJ: A heat exchanger computational procedure for temperature-dependent fouling. Chem.Eng.Comm. 16 189. 1982.

    Article  Google Scholar 

  47. Sundarem SM and Froment GF: Kinetics of coke deposition in the thermal cracking of propane. Chem.Eng.Sci. 34 635. 1979.

    Article  Google Scholar 

  48. Fryer PJ and Slater NKH: A direct simulation procedure for chemical reaction fouling in heat exchangers. Chem.Eng.J. 97 1985.

    Google Scholar 

  49. Fryer PJ and Slater NKH: The simulation of heat exchanger control with tube-side chemical reaction fouling. Chem.Eng.Sci., 41 2363. 1986.

    Article  CAS  Google Scholar 

  50. Pritchard AM: The economics of fouling, this conference. 1988.

    Google Scholar 

  51. Duran MA and Grossmann IE: A mixed-integer nonlinear programming algorithm for process synthesis. AIChE Ann. Meeting, San Francisco. 1984.

    Google Scholar 

  52. Duran MA and Grossmann IE: Simultaneous optimisation and heat integration of chemical processes. AIChE.J. 32 1 123. 1986.

    Article  CAS  Google Scholar 

  53. Saboo AK, Morari M, and Colberg RD: RESHEX — An Interactive software package for the synthesis and analysis of resilient heat exchanger networks. Parts I and II. Comp.Chem.Eng. 10 577–599. 1986.

    Article  CAS  Google Scholar 

  54. Saboo AK, Morari M, and Colberg RD: RESHEX — An Interactive software package for the synthesis and analysis of resilient heat exchanger networks. Parts I and II. Comp.Chem.Eng. 10 577–599. 1986.

    Article  CAS  Google Scholar 

  55. Parker D and Smith GJ: MIDAS — A software package for heat exchanger network targeting, design and analysis. Submitted to Chem.Eng. 1987.

    Google Scholar 

  56. Papoulis SA and Grossmann IE: A structural optimisation approach in process synthesis. Parts I–III. Comp.Chem.Eng. 7 695–734. 1983.

    Article  Google Scholar 

  57. Papoulis SA and Grossmann IE: A structural optimisation approach in process synthesis. Parts I–III. Comp.Chem.Eng. 7 695–734. 1983.

    Article  Google Scholar 

  58. Papoulis SA and Grossmann IE: A structural optimisation approach in process synthesis. Parts I–III. Comp.Chem.Eng. 7 695–734. 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fryer, P. (1988). Basic Concepts in Heat Exchanger Network Modelling. In: Melo, L.F., Bott, T.R., Bernardo, C.A. (eds) Fouling Science and Technology. NATO ASI Series, vol 145. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2813-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2813-8_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7766-8

  • Online ISBN: 978-94-009-2813-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics