Skip to main content

The Fouling of Catalysts by Deposition of Filamentous Carbon

  • Chapter
Book cover Fouling Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 145))

  • 706 Accesses

Abstract

Catalysts tend to loose activity under the specific conditions of their operation. Consideration of this deactivation affects not only the preparation of the catalysts but also, in many cases, the design of the very process in which they are used. Deactivation studies are, thus, of great importance and a number of authoritative monographs and reviews have been published (1–4). Deactivation may be brought about by many factors. The majors ones are:

  1. i)

    Strong adsorption of a poison on an active site, that changes the nature of the catalytic surface, diminishing the number of sites available for the reaction. Catalyst poisoning is frequently a selective, irreversible process. Sulphur compounds, mercury (for metals) and alkali (for stoichiometric acidic catalysts) are common poisons.

  2. ii)

    Solid state transformations, either sintering or solid state chemical phenomena. The former means the diminution of the surface area of the active species or the support by aggregation of crystallites. The latter refers to phase transformations or formation of new chemical compounds.

  3. iii)

    Formation of solid deposits, either by physical deposition or by a process involving adsorption, chemical reaction and growth on the surface of the catalysts. The term fouling is applied to this particular type of deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Catalyst Deactivation” (Delmon, B. and Froment, G.F., eds.), Elsevier Publ., Amsterdam (1980).

    Google Scholar 

  2. “Progress in Catalyst Deactivation” (Figueiredo, J.L., ed.), Martinus Nijhoff Publ., The Hague (1982).

    Google Scholar 

  3. “Deactivation and Poisoning of Catalysts” (Oudar, J. and Wise, H.., eds.), Marcel Dekker, New York (1985).

    Google Scholar 

  4. Trimm, D. L., “Introduction to Catalyst Deactivation” in Progess in Catalyst Deactivation (Eigueiredo, J.L., ed.), p. 3–22, Martinus Nijhoff Publish., The Hague (1982).

    Google Scholar 

  5. Rostrup-Nielsen, J.R., “Fouling of Catalysts.Industrial Examples” and “Carbon Limits in Steam Reforming”, this monograph.

    Google Scholar 

  6. Froment, G.F., “Fouling of Heat Transfer Surfaces by Coke Formation” in Fouling of Heat Transfer Equipment (E.F.C. Somerscales and J.G. Knutsen, eds.), p. 411–435, Hemisphere Publishing Corp., New York (1981).

    Google Scholar 

  7. LaCava, A.I., “Droplets and Filaments: on the Fouling of Metal Surfaces by Carboneous Materials from Hydrocarbon Gases above 850 K”, this monograph.

    Google Scholar 

  8. LaCava, A.I., Bernardo, C.A. and Trimm, D.L., “Studies of Deactivation of Metals by Carbon Deposition”, Carbon 20, 3, 219–223 (1982).

    Article  CAS  Google Scholar 

  9. LaCava, A.I., “Pyrolysis and Thermal Hydrogasification of Hydrocarbons”, Ph.D. Thesis, University of London (1976).

    Google Scholar 

  10. Figueiredo, J.L., “Carbon Formation on Steam Reforming Catalysts”, Ph.D. Thesis, University of London (1975).

    Google Scholar 

  11. Appleby, W.G., Gibson, J.W. and Good, G.M., “Coke Formation in Catalytic Cracking”, Ind. and Eng. Chem.-Process Design and Development, 1, 2, 102–110 (1962).

    Article  CAS  Google Scholar 

  12. Langner, B.E. and Meyer, S., “The Mechanism of Coke Formation in the Reaction of Butadiene on Calcined NaHN4-Y” in Catalyst Deactivation(Delmon, B. and Froment, G.F., eds.,), p. 91–102, Elsevier Scientific Publishing Co., Amsterdam (1980).

    Chapter  Google Scholar 

  13. Rolman, L.D. and Dennis, F.W., “Constraints on Carbon Formation on Zeolite Catalysts”, in Progress in Catalyst Deactivation (Figueiredo, J.L., ed.), p. 81–91, Martinus Nijhoff Publish., The Hague (1982).

    Google Scholar 

  14. Trimm, D.L., “Carbon Formation on Metals other than Nickel and on Alloys” in Progress in Catalyst Deactivation(Figueiredo, J.L., ed.), p. 65–79, Martinus Nijhoff Publish., The Hague (1982).

    Google Scholar 

  15. Presland, A.E.B. and Walker Jr., P.L., “Growth of Single-Crystal Graphite by Pyrolysis of Acetylene over Metals”, Carbon 7, 1–8 (1969).

    Article  CAS  Google Scholar 

  16. Tesner, P.A., Robinovich, E.Y., Refalkes, I.S. and Arefieva, E.F., “Formation of Carbon Fibres From Acetylene”, Carbon 8, 435–442 (1970).

    Article  Google Scholar 

  17. Lobo, L.S., “Carbon Formation From Hydrocarbons on Metals”, Ph.D. Thesis, University of London, (1971).

    Google Scholar 

  18. Lobo, L.S. and Trimm, D.L., “Complex Temperature Dependencies of the Rate of Carbon Deposition on Nickel”, Nature 234, 44, 15–16 (1971).

    CAS  Google Scholar 

  19. Lobo, L.S., Trimm, D.L. and Figueiredo, J.L., “Kinetics and Mechanism of Carbon Formation from Hydrocarbons on Metals” Proceed. 5th Int.Cong. Catal, Miami, 2, p. 1125–1137, North-Holland/American Elsevier, London/ /NewYork (1973).

    Google Scholar 

  20. Lobo, L.S. and Trimm, D.L., “Carbon Formation from Light Hydrocarbons on Nickel”, J. Catal 29, 1, 15–19 (1973).

    Article  CAS  Google Scholar 

  21. Bernardo, C.A. and Lobo, L.S., “Kinetics of Carbon Formation from Acetylene on Nickel”, J. Catal. 37, 267–278 (1975).

    Article  CAS  Google Scholar 

  22. Figueiredo, J.L. and Trimm, D.L., “Low Temperature Carbon Deposition on Nickel” Proceed. 4th Int. Carbon and Graphite Conf., London, p.314–317, Society of Chemical Industry, London (1974).

    Google Scholar 

  23. Baker, R.T.K., Barber, M.A., Feates, F.S., Harris, P.S. and Waite, R.J., “Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene”, J. Catal. 26, 51–62 (1972).

    Article  CAS  Google Scholar 

  24. Baker, R.T.K., Harris, P.S., Thomas, R.B. and Waite, R.J., “Formation of Filamentous Carbon from Iron, Cobalt and Chromium Catalyzed Decomposition of Acetylene”, J. Catal. 30, 86–95 (1973).

    Article  CAS  Google Scholar 

  25. Baker, R.T.K., “In-Situ Electron Microscopy Studies of Catalyst Particle Behaviour”, Catal. Rev. — Sci. Eng. 19, 2, 161–209 (1979).

    Article  CAS  Google Scholar 

  26. Rostrup-Nielsen, J.R., “Equilibria of Decomposition Reactions of Carbon Monoxide and Methane over Nickel Catalysts”, J. Catal. 27, 343–356 (1972).

    Article  CAS  Google Scholar 

  27. Rostrup-Nielsen, J.R. and Trimm, D.L., “Mechanism of Carbon Formation on Nickel-Containing Catalysts”, J. Catal. 48, 155–165 (1977).

    Article  CAS  Google Scholar 

  28. Bernardo, C.A. and Lobo, L.S., “Evidence that Carbon Formation from Acetylene on Nickel involves Bulk Diffusion”, Carbon 14, 287–288 (1976).

    Article  CAS  Google Scholar 

  29. Bernardo, C.A., “Carbon Formation and Removal in the Context of Nickel Catalysts”, Ph.D. Thesis, University of London (1977).

    Google Scholar 

  30. McCarty, J.G. and Wise, H., “Hydrogenation of Surface Carbon on Alumina Supported Nickel”, J. Catal. 57, 406–416 (1979).

    Article  CAS  Google Scholar 

  31. McCarty, J.G., Hou, P.Y., Sheridan, D., and Wise, H., “Reactivity of Surface Carbon on Nickel Catalysts. Temperature-Programmed Surface Reaction with Hydrogen and Water”, Am. Chem. Soc.-Symp. Series 202, 253–282 (1982).

    CAS  Google Scholar 

  32. Baker, R.T.K. and Harris, P.S., “The Formation of Filamentous Carbon”, in Chemistry and Physics of Carbon (Walker Jr., P.L. and Thrower, P.A., eds.), 14, p. 83–165, Marcel Dekker, New-York (1978).

    Google Scholar 

  33. Figueiredo, J.L., “Carbon Formation and Gasification on Nickel” in Progress in Catalyst Deactivation (Figueiredo, J.L., ed.), p. 45–63, Marti-nus Nijhoff Publish., The Hague (1982).

    Google Scholar 

  34. Manning, M.P., Gamirian, J.E. and Reid, R.C., “Carbon Deposition Studies Using Ni and Co Catalysts”, Ind. Eng. Chem.-Process Des.Dev. 21, 404–409 (1982).

    Article  CAS  Google Scholar 

  35. deBokx, P.K., Kock, A.J.H.M., Boellaard, E., Klop, W. and Geus, J.W., “The Formation of Filamentous Carbon on Iron and Nickel Catalysts. I. Thermodynamics”, J. Catal. 96, 454–467 (1985).

    Article  CAS  Google Scholar 

  36. Kock, A.J.H.M., deBokx, P.K., Boellaard, E., Klop, W. and Geus, J.W., “The Formation of Filamentous Carbon on Iron and Nickel Catalysts. II. Mechanism”, J. Catal. 96, 468–480 (1985).

    Article  CAS  Google Scholar 

  37. Boellaard, E., deBokx, P.K., Kock, A.J.H.M. and Geus, J.W., “The Formation of FilamentousCarbon on Iron and Nickel Catalysts. III. Morphology”, J. Catal. 96, 481–490 (1985).

    Article  CAS  Google Scholar 

  38. Alstrup, I., “On the Thermodynamics and Mechanism of Carbon Filament Growth on Nickel, Iron and Ni-Cu Alloy Catalysts” in publication in J. Catalysis.

    Google Scholar 

  39. Alstrup, I., “Models for Carbon Filament Growth on Nickel, Iron and Ni-Cu Alloy Catalysts”, Abstracts of the 18th Biennial Conf. on Carbon, Worcester (1987).

    Google Scholar 

  40. Bernardo, C.A., Alstrup, I., and Rostrup-Nielsen, J.R., “Carbon Deposition and Methane Steam Reforming on Silica-Supported Ni-Cu Catalysts”, J. Catal. 96, 2, 517–534 (1985).

    Article  CAS  Google Scholar 

  41. Yang, K.L. and Yang, R.T., “The Acceleration and Retarding Effects of Hydrogen on Carbon Deposition on Metal Surfaces”, Carbon 24, 6, 687–693, (1986).

    Article  CAS  Google Scholar 

  42. Baker, R.T.K., Gadsby, G.R., Thomas, R.B. and Waite, R.J., “The Production and Properties of Filamentous Carbon”, Carbon 13, 211–214 (1975).

    Article  CAS  Google Scholar 

  43. Bernardo, C.A. and Lobo, L.S., “Kinetics of Carbon Formation from Acetylene and 1-Butene on Cobalt” in Catalyst Deactivation (Delmon, B. and Froment, G.F., eds.), p. 409–420, Elsevier Scientific Publishing Co., Amsterdam (1980).

    Chapter  Google Scholar 

  44. Trimm, D.L., “Coke Formation and Gasification on Refineries” in Carbon and Coal Gasification (Figueiredo, J.L. and Moulijn, J.A., eds.), p. 523–541, Martinus Nijhoff Publish., Dordrecht (1986).

    Google Scholar 

  45. Rostrup-Nielsen, J.R., “Sulphur-Passivation Nickel Catalysts for Carbon-Free Steam Reforming of Methane”, J. Catal. 85, 31–43 (1984).

    Article  CAS  Google Scholar 

  46. Andersen, N.T., Topsøe, F., Alstrup, I. and Rostrup-Nielsen, J.R., “Statistical Models for Ensemble Control by Alloying and Poisoning of Catalysts. I. Mathematical Assumptions and Derivations”, in publication in J. Catalysis.

    Google Scholar 

  47. Baker, R.T.K., private communication.

    Google Scholar 

  48. Tavares, M.T., Bernardo, CA., Alstrup, I. and Rostrup-Nielsen, J.R., “Reactivity of Carbon Deposited on Ni-Cu Alloy Catalysts from the Decomposition of Methane”, J. Catal. 100, 545–548 (1986).

    Article  CAS  Google Scholar 

  49. Alstrup, I., Rostrup-Nielsen, J.R. and Bernardo, C.A., “Formation of Octopus Carbon on Sulphur and Copper Modified Nickel Catalysts”, Abstracts of the 18th Biennial Conf. on Carbon, Worcester (1987).

    Google Scholar 

  50. Franck, J.P. and Martino, G., “Deactivation and Regeneration of Catalytic-Reforming Catalysts” in Progress in Catalyst Deactivation (Figueiredo, J.L., ed.), p. 355–397, Martinus Nijhoff Publish., The Hague (1982).

    Google Scholar 

  51. Figueiredo, J.L., Bernardo, C.A. and Orfão, J.J.M., “Gasification of Carbon Deposited on Metallic Catalysts”, in Carbon and Coal Gasification (Figueiredo, J.L. and Moulijn, J.A., eds.), p. 269–287, Martinus Nijhoff Publish., Dordrecht (1986).

    Google Scholar 

  52. Figueiredo, J.L. and Trimm. D.L., “Gasification of Carbon Deposited on Nickel Catalysts”, J. Catal. 40, 154–159 (1975).

    Article  CAS  Google Scholar 

  53. Nishiyama, Y., and Tamai, Y., “Deposition of Carbon and its Hydrogenation Catalyzed by Nickel”, Carbon 14, 13–17 (1976).

    Article  CAS  Google Scholar 

  54. Audier, M., Coulon, M. and Bonnetain, L., “Hydrogenation of Catalytic Carbons Obtained by CO Disproportionation or CH4 Decomposition on Nickel” Carbon 17, 391–394 (1979).

    Article  CAS  Google Scholar 

  55. Bernardo, C.A., Figueiredo, J.L., Chludzinski, J.J. and Baker, R.T.K., “Growth and Gasification of Carbon Filaments From Nickel”, Abstracts of the 18th Biennial Conf. on Carbon, Worcester (1987).

    Google Scholar 

  56. Baker, R.T.K., Alonzo, J.R., Dumesic, J.A. and Yates, D.J.C., “Effect of the Surface State of Iron on Filamentous Carbon Formation”, J. Catal. 77, 74–84 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bernardo, C.A. (1988). The Fouling of Catalysts by Deposition of Filamentous Carbon. In: Melo, L.F., Bott, T.R., Bernardo, C.A. (eds) Fouling Science and Technology. NATO ASI Series, vol 145. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2813-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2813-8_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7766-8

  • Online ISBN: 978-94-009-2813-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics