Until the beginning of this century, historians of natural philosophy used mainly three major sources in their study of Newton’s theory of matter: the Philosophiae naturalis principia mathematica, the Opticks, and the minute treatise De natura acidorum. Thus, the great scholar of atomism, Kurd Lasswitz (1848–1910), whose monumental masterpiece Geschichte der Atomistik vom Mittelalter bis Newton published in 1890 is still the natural starting point of every investigation in this domain, erred, ostensibly in spite of himself, when he wrote:

Thus Newton displays a great indifference toward the theories of matter, and he attempts neither to pursue any assumptions about the fundamental constituents of matter to their ultimate consequences, nor to expose them clearly or bring them into mutual agreement.1

Since that time, the Newtonian doctrine of matter has been the object of several extensive studies.2 Most of these works deal with the general character of matter by emphasizing the physical, philosophical or metaphysical aspects of the problem.


Repulsive Force Substantial Individual Molecular Theory Elastic Fluid Proposition VIII 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Lasswitz, Geschichte der Atomistik vom Mittelalter bis Newton, Hamburg/Leipzig, 1890 (reprint Hildesheim, 1963), vol. II, p. 556 (my translation).Google Scholar
  2. 2.
    See the publications of H. Metzger, I.B. Cohen, M. Guerlac, A.R. and M.B. Hall, R.H. Kargon, R.E. Schofield, E. McMullin and B.J.T. Dobbs.Google Scholar
  3. 3.
    A. Thackray, Atoms and powers — an Essay on Newtonian Matter-theory and the Development of Chemistry, Cambridge, MA., 1970.Google Scholar
  4. 4.
    Ibid., pp. 56–60.Google Scholar
  5. 5.
    Ibid., pp. 23–24, 45, 187–188, and 204.Google Scholar
  6. 6.
    B.J.T. Dobbs, The Foundations of Newtons Alchemy or “The Hunting of the Greene Lyon”, Cambridge, 1975.Google Scholar
  7. 7a).
    K. Figala, Die “Kompositionshierarchie” der Materie — Newtons quantitative Theorie und Interpretation der qualitativen Alchemie, Habilitationsschrift, Munich, 1977.Google Scholar
  8. 7b).
    K. Figala, Newton as Alchemist, History of Science 15 (1977) 102–137.Google Scholar
  9. 7c).
    K. Figala, Die exakte Alchemie von Isaac Newton Seine “gesetzmässige” Interpretation der Alchemie dargestellt am Beispiel einiger ihn beeinflussender Autoren, Verhandlungen der Naturforschers-Gesellschaft Basel 94 (1984) 157–228.Google Scholar
  10. 8.
    The modern theory of phenomenal matter knows, in a first approximation, two complementary doctrines to explain substantial differences. Besides the molecular interpretation, there is the lattice theory. According to the latter, the atoms or ions of a compound are arranged in a specific manner into a three-dimensional crystal lattice. The “substantial species”, then, is defined by the numeric proportion between the constituent particles and their spatial arrangement. Of course, the lattice theory only holds for solid substances. For molecular bodies in the solid phase, both theories coincide. One of the first lattice theories of matter can be found in the works of Joachim Jungius (1587–1657); see footnote 28., Section 3.2, p. 74–87.Google Scholar
  11. 9.
    I. Newton, Opticks: or, a Treatise of the Refractions, Refractions, Inflections and Colours of Light, 4th edition, London, 1730. Quotations are according to the reprint edition New York, 1952.Google Scholar
  12. 10.
    Ibid., Book II, Part III.Google Scholar
  13. 11.
    Ibid., Book III, Part I, Query 31, p. 394.Google Scholar
  14. 12.
    Ibid., Book II, Part III, Proposition VIII, p. 269.Google Scholar
  15. 13.
    See footnote 3., p. 60.Google Scholar
  16. 14.
    See footnote 9., Book II, Part III, Proposition VIII, p. 268.Google Scholar
  17. 15.
    I. Newton, De natura acidorum, inserted in H.W. Turnbull ed., The Correspondence of Isaac Newton, volume III, Cambridge, 1961, pp. 256–257.Google Scholar
  18. 16.
    See footnote 3., p. 64. For a detailed analysis of the “nutshell” theory, see also: A. Thackray, “Matter in a nut-shell”: Newton’s Opticks and Eightteenth-Century Chemistry, Ambix 15 (1968), pp. 29–53.Google Scholar
  19. 17.
    See footnote 9., Book III, Part I, Query 31, p. 400. Cf. footnote 3., p. 15.Google Scholar
  20. 18.
    I. Newton, Some Thoughts about the Nature of Acids, inserted in H.W. Turnbull ed., The Correspondence of Isaac Newton, volume III, Cambridge, 1961, pp. 257–258.Google Scholar
  21. 19.
    See footnote 9., Book II, Part III, Proposition VIII, p. 269.Google Scholar
  22. 20.
    Cf. C. Vilain, Le modèle mécanique de la réfraction dans les Principia, paper read at the colloquy Les Principia de Newton: questions et commentaires, Paris, March 7th, 1987. the text of this paper will be inserted in Revue d’Histoire des Sciences 40 (3–4)(1987) (forthcoming).Google Scholar
  23. 21.
    See footnote 6., p. 217–222.Google Scholar
  24. 22.
    Ibid, p. 220. For a detailed analysis of the origin and intrinsic value of the sulphur-mercury theory, see R. Hooykaas, Het begrip element in zijn historisch-wijsgerige ontwikkeling, Ph.D. thesis, Utrecht (The Netherlands), 1983, p. 39–73. A xerox copy of an English translation of this work, entitled The Concept of Element — its historical-philosophical development, is obtainable from the author of the present article.Google Scholar
  25. 22b.
    See also R. Hooykaas, the experimental origin of chemical atomic and molecular theory before Boyle, which appeared in R. Hooykaas, Selected Studies in History of Science, Coimbra, 1983, p. 285–307 (particularly p. 292–297).Google Scholar
  26. 23.
    See footnote 7b, p. 116.Google Scholar
  27. 24.
    See footnote 7c, p. 167. According to Professor Figala (private communication) Newton does not make clear in his manuscripts how he arrived at just this numerical proportion.Google Scholar
  28. 24b.
    Cf. A.R. Hall and M.B. Hall, Unpublished Scientific Papers of Isaac Newton. A Selection from the Portsmouth Collection in the University Library, Cambridge, 1962, p. 314 and 317. In Opticks, on the other hand, Newton deduces that “[…] water has above forty times more pores than parts,” and this on the base of the relative density of gold (19 times that of water) and on the assumption that gold-foil would be permeable to water. See footnote 9., Book II, Part III, Proposition VIII, p. 267. With regard to this presumed permeability of gold to water Newton prudently adds “as I have been inform’d by an eye witness” (ibidem). Google Scholar
  29. 25.
    See also footnote 7c, p. 168.Google Scholar
  30. 26.
    Cf. ibidem, p. 170.Google Scholar
  31. 27.
    Ibidem, p. 169. See also footnote 6., p. 231 and compare footnote 9., Book III, Part I, Query 30, p. 374–375Google Scholar
  32. 27b.
    I. Newton Philosophiae naturalis principia mathematica, London, 1687, p. 402 (Hypothesis 3).Google Scholar
  33. 28.
    H.H. Kubbinga, Le développement historique du concept de «molécule» dans les sciences de la nature jusqu’à la fin du XVIIIe siècle, Ph.D. thesis, École des Hautes Études en Sciences Sociales, Paris, 1983. I am now preparing a monograph on L’Histoire du concept de “molécule” (until ca. 1925).Google Scholar
  34. 29a).
    H.H. Kubbinga, Les premières théories “moléculaires”:Isaac Beeckman (1620) et Sébastien Basson (1621) — Le concept d’“individu substantiel” et d’“espèce substantielle”, Revue d’Histoire des Sciences 37 (3–4) 215–233 (1984).CrossRefGoogle Scholar
  35. 29b).
    H.H. Kubbinga, La première spécification dite “moléculaire” de l’atomisme épicurien: Isaac Beeckman (1620) et le concept d’“individu substantiel”, Lias 11 (2) 287–306 (1984).Google Scholar
  36. 30.
    H.H. Kubbinga, Isaac Beeckman (1588–1637) en de molecularisering van de microcosmos. Een aspect van de “mechanisering van het wereldbeeld” [Isaac Beeckman (1588–1637) and the molecularization of the microcosm. An aspect of the “mechanization of the world picture”], De zeventiende eeuw (The Netherlands) 2 (2) 59–79 (1986) (with a summary in French).Google Scholar
  37. 31.
    See footnote 3., p. 56.Google Scholar
  38. 32.
    See footnote 29b, p. 300.Google Scholar
  39. 33.
    See footnote 28., Chapter IV, p. 121–156.Google Scholar
  40. 34.
    See for instance: G.E. Stahl, De differentia mixti, texti, aggregati, individui (1700), inserted in G.E. Stahl, Observationis physico-chymico-medicae curiosae [..], Halle, 1709, p. 47–63.Google Scholar
  41. 35.
    See footnote 34., p. 60.Google Scholar
  42. 36.
    G.E. Stahl, Specimen Beccherianum [..], a commentary on J.J. Becher’s Physicae subterraneae libri duo [..] (Frankfort, 1669), added to the 1703 reprint edition of this work, that was prepared by Stahl.Google Scholar
  43. 37.
    G.E. Stahl, De divisionis et diffissionis differentia (1703), inserted in G.E. Stahl, Observations physico-chymico, medicae curiosae [..], Halle, 1709, p. 63–76.Google Scholar
  44. 38.
    See footnoe 28., Chapter V, p. 157–196. See also M. Crosland, the development of the concept of the gaseous state as a third state of matter, Proceedings of the 10th International Congress of the History of Science (Paris, 1962) II p. 851–854Google Scholar
  45. 38b.
    R. Fox, The caloric theory of gases, from Lavoisier to Regnault, Oxford, 1971, Chapter I. More often than not Stahlianism has been judged from the sole viewpoint of the vicissitudes of the phlogiston theory. E.g., Partington neglected Stahl’s molecular theory almost entirelyGoogle Scholar
  46. 38b.
    J.R. Partington, A history of chemistry, volume II, London, 1961, Chapter XVIII. It is, moreover, very illuminating to see that neither Stahl’s corpuscular theory nor his doctrine of the relative complexity of phenomenal substances have been dealt with at the symposium Georg Stahl (1659–1734) und seine Zeit (Halle-Wittenberg, 1984). For a better interpretation of Stahlianism, seeGoogle Scholar
  47. 38c.
    H. Metzger, Newton, Stahl, Boerhaave et la doctrine chimique, Paris, 1930, part II, p. 91–188 (La doctrine chimique de Stahl et de ses disciples).Google Scholar
  48. 38d.
    See also H.H. Kubbinga, Hélène Metzger et la théorie corpusculaire des stahliens au XVIIIe siècle, contribution to the colloquy Hélène Metzger (1889–1944): son oeuvre et son influence sur l’historiographie des sciences (Paris, May 21–23, 1985); it will appear in the congress proceedings, entitled Etudes sur Hélène Metzger (Paris, 1988).Google Scholar
  49. 39.
    The proportion of mattenvoid = 1:(2n - 1) can be considered as something like a ‘phlogiston’ law, in the sense that it determines the spatial conditions that must be fulfilled in order that the ‘particles of the ultimate composition’ are transformed, the one successively into the other, starting from the common trunk.Google Scholar
  50. 40.
    See footnote 28., Chapters IV and V, p. 121–196.Google Scholar
  51. 41.
    G.-F. Venel, article ‘Chymie’ in D. Diderot and J. Le Rond d’Alembert (ed.), Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers, volume III (Neuchâtel, 1753), p. 416b.Google Scholar
  52. 42.
    Ibidem, p. 416a,b.Google Scholar
  53. 43.
    A.L. Levoisier, Traité élémentaire de chimie, Paris, 1789. We quote according to the translation of Robert Kerr (Edinburgh, 1790; reprint New York, 1965), entitled Elements of Chemistry. See especially p. xxiv.Google Scholar
  54. 44.
    Some traces of the Stahlian doctrine of the relative complexity are to be found in the terminology utilized in the Méthode de nomenclature chimique, proposée par MM. de Morveau, Lavoisier, Bertholet [sic], & de Fourcroy, Paris, 1787.Google Scholar
  55. 45.
    See footnote, 43., p. 5.Google Scholar
  56. 46.
    Ibidem, p. 3.Google Scholar
  57. 47.
    Ibidem, p. 7.Google Scholar
  58. 48.
    Ibidem, p. 8.Google Scholar
  59. 49.
    Ibidem, p. 25.Google Scholar
  60. 50.
    See footnote 9., Book III, Part I, Query 31, p. 395.Google Scholar
  61. 51.
    H. Boerhaave, Elementa chemiae, quae anniversario labore docuit, in publicis, privatisque scholis, Leyden, 1732, volume I, p. 175 ff.Google Scholar
  62. 52.
    See footnote 43., p. 15.Google Scholar
  63. 53.
    Ibidem, p. 383.Google Scholar
  64. 54.
    A. Thackray, John DaltonCritical assessments of his life and science, Cambridge (Mass.), 1972, p. 66.Google Scholar
  65. 55.
    J. Dalton, A new System of Chemical Philosophy London, 1808 (volume I, part I), 1810 (volume I, part II), 1827 (volume II, part I). See especially volume I, part I, chapter II, p. 141–144.Google Scholar
  66. 56.
    Ibidem, volume I, part I, p. 141.Google Scholar
  67. 57.
    Ibidem, volume I, part I, p. 143: “If some of the particles of water were heavier than others, if a parcel of the liquid on any occasion were constituted principally of these heavier particles, it must be supposed to affect the specific gravity of the mass, a circumstance not known.”Google Scholar
  68. 58.
    Ibidem, volume I, part I, p. 143.Google Scholar
  69. 59.
    Similar views were developed before by Joachim Jungius (1587–1657; see footnote 28., section 3.2, p. 74–87) and Georg Ernest Stahl (see footnote 28., section 4.4, p. 133–147).Google Scholar
  70. 60.
    See footnote 55., volume I, part I, chapter III, p. 211–216.Google Scholar
  71. 61.
    Ibidem, volume I, part I, p. 168.Google Scholar
  72. 62.
    Ibidem, volume I, part I, p. 212.Google Scholar
  73. 63.
    H.E. Roscoe and A. Harden, A New View of the Origin of Dalton’s Atomic Theory, London, 1896, p. 112. On this point, I completely endorse the interpretation of A. Thackray. Cf. footnote 3., p. 274.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • H. H. Kubbinga
    • 1
  1. 1.University of GroningenThe Netherlands

Personalised recommendations