Newton’s Mathematization of Physics in Retrospect

  • P. A. Kroes
Part of the Archives Internationales D’Histoire des Idées / International Archives of the History of Ideas book series (ARCH, volume 123)


The publication of Newton’s Principia marks the beginning of modern science. But what is so modern about Newton’s Principia? After all, the content of the Principia is nowadays usually referred to as classical Newtonian physics. Physicists have ‘abandoned’ most of the ideas and theories contained in the Principia. Not Newtonian mechanics, but quantum mechanics and relativistic mechanics are the cornerstones of contemporary physics. However, in spite of the revolutionary changes in physics which took place around the turn of the twentieth century and which led to the overthrow of the Newtonian physical worldview, Newtonian physics is not completely outdated; it still has something in common with present day physics which definitively gives it a modern spirit.


Quantum Mechanic Physical Reality Analytic Geometry Mathematical Construct Absolute Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I.B. Cohen (ed.) 1958: Isaac Newton’s papers & letters on natural philosophy, Cambridge (Mass.): Harvard University Press.Google Scholar
  2. I.B. Cohen 1985: The birth of a new physics, New York: W.N. Norton & Co.Google Scholar
  3. I.B. Cohen 1983: The Newtonian Revolution, Cambridge: Cambridge Univ. Press.Google Scholar
  4. E.J. Dijksterhuis 1986: The mechanization of the world picture, Princeton Pike: Princeton Univ. Press.Google Scholar
  5. M. GellMann 1977: “The search for unity in particle physics,” communication presented at the 1580th stated meeting of the American Academy of Arts and Sciences, 13 April.Google Scholar
  6. W. Heisenberg 1925: “Ueber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen,” Z. Phys. 33, p. 879; translated into English in Van der Waerden [1968].CrossRefGoogle Scholar
  7. J. Hendry 1984: The creation of quantum mechanics and the Bohr-Pauli dialogue, Dordrecht: D. Reidel Publ. Co.Google Scholar
  8. M Jammer 1966: The conceptual development of quantum mechanics, New York: McGraw-Hill Book Co.Google Scholar
  9. M. Kline 1972: Mathematical Thought from Ancient to Modern Times, New York: Oxford Univ. Press.Google Scholar
  10. T.S. Kuhn 1978: Black-body theory and the quantum discontinuity 1894–1912, Oxford: Clarendon Press.Google Scholar
  11. A.I. Miller 1984: Imagery in scientific thought, Boston: Birkhäuser.Google Scholar
  12. I. Newton 1973: Mathematical Principles of Natural philosophy, Motte’s translation revised by Cajori, Berkeley: Univ. of California Press, 2 Vols.Google Scholar
  13. W. Pauli 1979: Wissenschaftlicher Briefwechsel, Band I: 1919–1929, A. Hermann, K. v. Meyenn, V.F. Weisskopf (eds.), New York: Springer Verlag.Google Scholar
  14. P.B. Scheurer 1984: “Reversible motion and irreversible evolution: Quantum kinetics and the postulate TEI,” Arch. Sc. Genève, vol. 37, fasc. 2, pp. 229–264.Google Scholar
  15. P.B. Scheurer 1987: De I’homme, de la mesure et du temps, to appear.Google Scholar
  16. A. Sommerfeld 1921: Atombau und Spektrallinien, Braunschweig: Friedr. Vieweg & Sohn (2e ed.). B.L. Van der WaerdenGoogle Scholar
  17. A. Sommerfeld 1968: Sources of quantum mechanics, New York: Dover Publ.Google Scholar
  18. R.S. Westfall 1984: Never at Rest, Cambridge: Cambridge Univ. Press.Google Scholar
  19. D.T. Whiteside 1982: “Newton the mathematician” in Zev Bechler (ed.) Contemporary Newtonian Research, Dordrecht: D. Reidel Publ. Co. E.P. WignerGoogle Scholar
  20. D.T. Whiteside 1969: “The unreasonable effectiveness of mathematics in the physical sciences,” in Saaty en Weyl (eds.): The spirit and uses of the mathematical sciences, New York: McGraw-Hill.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • P. A. Kroes
    • 1
  1. 1.University of NijmegenThe Netherlands

Personalised recommendations