Inertia, the Innate Force of Matter: A Legacy from Newton to Modern Physics

  • Ed Dellian
Part of the Archives Internationales D’Histoire des Idées / International Archives of the History of Ideas book series (ARCH, volume 123)


For many scholars, the publishing of Isaac Newton’s Principia in 1687 marks the beginning of a period of physics which they call the classical one.1 Yet it is questionable whether Newton’s “Mathematical Principles of Natural Philosophy”2 actually represent what is known as physics today. The Principia is a foundation for a mathematical philosophy of nature as viewed by Plato. If Physics is within the scope of this philosophy, then it also includes metaphysics, as a presupposed knowledge of the absolute, of space and time, of matter, force and motion, of cause and effect; read the Scholium that follows the eight definitions introduced at the beginning of the Principia. 3 That is why physicists of the positivistic school of thought have had their problems with Newton since the time of George Berkeley and Ernst Mach,4 and why, as a result, many people are more familiar with the title than with the contents of the Principia.


Modern Physic Physical Entity Mathematical Philosophy Synthetic Geometry Proportional Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cf. Eduard Jan Dijksterhuis, De mechanisering van het wereldbeeld, Amsterdam 1950Google Scholar
  2. 1a.
    German trans, by H. Habicht, Die Mechanisierung des Weltbildes, Berlin 1956; reprint Berlin 1983, p.3.Google Scholar
  3. 2.
    Isaac Newton, Philosophiae Naturalis Principia Mathematica, in: Isaaci Newtoni Opera quae Exstant Omnia, Samuel Horsley ed., London 1779–1785;Google Scholar
  4. 2a.
    German trans.: Mathematische Prinzipien der Naturlehre, J.Ph. Wolfers ed., Berlin 1872Google Scholar
  5. 2b.
    Mathematische Grundlagen der Naturphilosophie, Ed Dellian ed., Hamburg 1987, in preparation.Google Scholar
  6. 3.
    S.Horsley ed., ibid. Vol.II p.6–12.Google Scholar
  7. 4.
    George Berkeley, Schriften über die Grundlagen der Mathematik und Physik, W. Breidert ed., Frankfurt a.M. 1985 = Suhrkamp Taschenbuch Wissenschaft No. 496, p. 210–243;Google Scholar
  8. 4a.
    Ernst Mach, Die Mechanik in ihrer Entwicklung, repr. Frankfurt a.M. 1982, p. V.Google Scholar
  9. 5.
    Cf. Max Jammer, Concepts of Force, Cambridge/Mass., 1957, p. 166.Google Scholar
  10. 6.
    Immanuel Kant, Metaphysische Anfangsgründe der Naturwissenschaft, in: Kant’s gesammelte Schriften, Berlin 1911, Vol.IV p.468, 543.Google Scholar
  11. 7.
    This is still an open problem in quantum physics; cf. Gino Tarozzi A. van der Merwe eds., Open Questions in Quantum Physics, Dordrecht 1985.Google Scholar
  12. 8.
    Cf. Roger Cotes’s preface to the Second Edition of the Principia, London 1713, in S.Horsley ed., op. cit. Vol.II p.XIII-XXV.Google Scholar
  13. 9.
    Principia, definition 3; cf. S. Horsley ibid. p. 2. The problem that is discussed in this paper may have started in a sense from Andrew Motte’s translating of impetus as impulse in the Principia’s first English edition in 1729, thus cutting the connection between Newton and the impetus theory (Galileo, Leonardo da Vinci, Buridan).Google Scholar
  14. 10.
    Also Wolfgang Breidert ed., op.cit. p.48–55, and Max Jammer, Der Begriff der Masse in der Physik, Darmstadt 1981, p. 74, 75.Google Scholar
  15. 11.
    CF. von Weizsäcker, Aufbau der Physik, München 1985, p.234,243–45.Google Scholar
  16. 12.
    Cf. The banishment of the causa-effectus relation from mechanics (“Cet unique axiome vague & obscur”) by Jean le Rond d’Alembert, Traité de Dynamique, Paris 1758, Préliminaire, p. XI-XII.Google Scholar
  17. 13.
    Samuel Clarke, A Demonstration of the Being and Attributes of God, London 1705.Google Scholar
  18. 15.
    Cf. B.J.T. Dobbs, The Foundations of Newton’s Alchemy, Cambridge 1983, p. 193;Google Scholar
  19. 15a.
    see also W. Windelband, Lehrbuch der Geschichte der Philosophie, H. Heimsoeth ed., Tübingen 1980, p.343–365 (§ 31 “Substanz und Kausalität”).Google Scholar
  20. 16.
    The phrase causa aequat effectum is actually a product of Leibniz’s own; cf. H.J. Heß, Die unveröffentlichen naturwissenschaftlichen und technischen Arbeiten von Leibniz; Studia Leibnitiana Suppl. Vol. 17 (1978), p. 183–205.Google Scholar
  21. 17.
    The phrase causa aequat effectum is actually a product of Leibniz’s own; cf. H.J. Heß, Die unveröffentlichen naturwissenschaftlichen und technischen Arbeiten von Leibniz; Studia Leibnitiana Suppl. Vol. 17 (1978). p.203.Google Scholar
  22. 18.
    Cf. the Scholium Generale at the end of the Principia’s book III (in S. Horsley op.cit. Vol. III, p. 174: “Et satis est quod Gravitas revera existat et agat secundum leges a nobis expositas…”).Google Scholar
  23. 19.
    Ibid. Vol. II p. 14. The axiom of the proportionality of cause and effect can be found in a little alterated formulation for instance in Jacques Rohault, Traité de Physique, Paris 1671, chapter V section 6–10; this book appeared in London in 1682 in a Latin translation, and was translated into English by John and Samuel Clarke in 1723.Google Scholar
  24. 20.
    Cf. Max Jammer, op.cit. (ref. 5) p. 130/1; Brian D. Ellis, Newton’s Concept of Motive Force, Journ. Hist. Ideas (23) 1962, p. 273CrossRefGoogle Scholar
  25. 20a.
    I. Bernard Cohen, The Newtonian Revolution, Cambridge 1980, p. 172Google Scholar
  26. 20b.
    Richard S. Westfall, Force in Newton’s Physics, London 1972, p. 472;Google Scholar
  27. 20c.
    Werner Kutschmann, Die Newtonsche Kraft, Wiesbaden 1983 = Studia Leibnitiana Sonderheft 12; E.J. Dijksterhuis, op.cit. p. 525.Google Scholar
  28. 21.
    Cf. especially Werner Kutschmann, Die Newtonsche Kraft, Wiesbaden 1983. p. 35.Google Scholar
  29. 22.
    Ernst Mach, Die Mechanik in ihrer Entwicklung, repr. Frankfurt a.M. 1982. p. 210.Google Scholar
  30. 23.
    But in this way it is treated by, for instance, Jürgen Mittelstrass, Neuzeit und Aufklärung, Berlin 1970, p. 288;CrossRefGoogle Scholar
  31. 23a.
    Steven Weinberg, Teile des Unteilbaren, Heidelberg 1984, p. 139, and Brockhaus Enzykopädie 1970 under “Kraft.”Google Scholar
  32. 24.
    Cf. Max Jammer, The Philosophy of Quantum Mechanics, New York 1974, p. 54: “The view that a formal identity between mathematical relations betrays the identity of the physical entities involved… harmonizes with the spirit of modern physics.… Physical entities which satisfy identical formalisms have to be regarded as identical themselves…”Google Scholar
  33. 25.
    Cf. Principia book III, regula philosophandi No. 3 and commentary; in S. Horsley, op.cit. Vol. III p. 2–3; James E. McGuire, Atoms and the Analogy of Nature: Newton’s third Rule of Philosophizing; Hist. Phil. Sci. I No. 1 (1970) p. 1.Google Scholar
  34. 26.
    Cf. James E. McGuire and Martin Tamny, Certain Philosophical Questions, Newton’s Trinity Notebook, Cambridge 1983, p. 134, 135.Google Scholar
  35. 27.
    Cf. Principia book I, Scholium after Lemma X (S. Horsley, op.cit. Vol. III p. 36), “Si quantitates indeterminatae diversorum generum conferanter inter se…” (my italics); cf. also John Wallis, Mechanica, London 1670, Proposition VII.Google Scholar
  36. 28.
    G.W. Leibniz, Brevis demonstratio erroris memorabilis Cartesii et aliorum..., Acta Eruditorum, March 1686.Google Scholar
  37. 29.
    Cf. Principia, Newton’s commentary to definition 4.Google Scholar
  38. 30.
    Cf. Principia in S. Horsley, op.cit. Vol. III p. 30,36.Google Scholar
  39. 31.
    So for instance Max Born, Die Relativitätstheorie Einsteins, Berlin 1984, p. 27;Google Scholar
  40. 31a.
    see also I. Bernard Cohen, Newton’s Second Law and the Concept of Force in the Principia, in Robert Palter ed., The Annus Mirabilis of Sir Isaac Newton 1666–1966, Cambridge/Mass. 1970, p. 143.Google Scholar
  41. 32.
    Roger Cotes, Preface to the Principia’s Second Edition of 1713, in S. Horsley ed., op.cit. Vol. III p. XVI.Google Scholar
  42. 33.
    At the very beginning of the motion = “sub ipso motus initio,” as Cotes says, corresponding to Newton’s own formulation in the Principia, Lemma X.Google Scholar
  43. 34.
    This concept corresponds to the kinetic energy of analytical mechanics, expressed by mv 2 /2. The missing factor 1/2 was arbitrarily added only in 1829 by G. Coriolis because of better usage for integrations; see Max Jammer, Concepts of Force, op. cit. p. 166 footnote 12.Google Scholar
  44. 35.
    Newton himself called the Cartesian-Leibnizian method the “analysis of bunglers”; see Richard S. Westfall, Never at Rest, A Biography of Sir Isaac Newton, Cambridge 1980, p. 380.Google Scholar
  45. 36.
    Cf. Ed Dellian, Die Newtonische Konstante, Philosophia Naturalis (22) No. 3 (1985) p. 400Google Scholar
  46. 36a.
    Ed Dellian, Experimental Philosophy Reappraised, Speculations in Science and Technology (9) No. 2 (1986) p. 135.Google Scholar
  47. 37.
    Cf. footnote 24 above.Google Scholar
  48. 38.
    Cf. Ed Dellian, On Cause and Effect in Quantum Physics, Speculations in Science and Technology, in print.Google Scholar
  49. 39.
    Samuel Clarke, A letter to Mr. Benjamin Hoadly F.R.S., Philosophical Transactions Vo. 35 (1727–1728), p. 381.CrossRefGoogle Scholar
  50. 40.
    The connection of this equation with our mathematical expression for the equivalent inertial force could contribute to a mastering of the formal problems of modern physics, since the eq. E = (mv)c can very easily be demonstrated to be a desideratum in the foundation of quantum physics. Cf. also footnote 38.Google Scholar
  51. 41.
    Cf. Carolyn Merchant, The Death of Nature, German: Der Tod der Natur, München 1987.Google Scholar
  52. 42.
    B.J.T. Dobbs, op.cit. p. 212: “The universe lived again as Newton’s thought swung on towards the Principia in the 1680’s, for forces and active principles were everywhere.”Google Scholar
  53. 43.
    Cf. B.J.T. Dobbs, op.cit. p. 13.Google Scholar
  54. 44.
    More thoughtful physicists concede that such an understanding of modern physics is still missing. Cf. for instance Murray Gell-Mann (Nobel Price 1969), whom I. Bernard Cohen quotes as follows: “All of modern physics is governed by that magnificent and thoroughly confusing discipline called quantum mechanics, invented more than fifty years ago… Nobody understands it, but we all know how to use it and how to apply it to problems; and so we have learned to live with the fact that nobody can understand it.” (The Newtonian Revolution, op.cit. p. 147).Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Ed Dellian
    • 1
  1. 1.ChiemseeWest Germany

Personalised recommendations