Advertisement

Reconciliation of the Newtonian Framework with Thermodynamics by the Reproducibility of a Collective Physical Quantity

  • Guido J. M. Verstraeten
Chapter
Part of the Archives Internationales D’Histoire des Idées / International Archives of the History of Ideas book series (ARCH, volume 123)

Abstract

Attempts to reduce irreversible processes to the scope of Newton’s mechanics are particularly challenging topics for both physical and philosophical research. Hollinger and Zenzen,1 for instance, claim that macroscopic irreversibility has a mechanical origin, and they explain this within the Newtonian framework.

Keywords

Liouville Equation Entropy Function Thermodynamic Description Initial Boundary Condition Thermodynamic Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    H.B. Hollinger and M.J. Zenzen, Philosophy of Science, 49 (1982), pp. 309–354.CrossRefGoogle Scholar
  2. 2.
    O. Penrose, Foundations of Statistical Mechanics, Pergamon Press, 1970, p. 198.Google Scholar
  3. O. Penrose, Foundations of Statistical Mechanics, Pergamon Press, 1970, pp. 199–207.Google Scholar
  4. 4.
    H.B. Hollinger and C.F. Curtiss, The Journal of Chemical Physics, 33 (1960), 5, p. 1386.CrossRefGoogle Scholar
  5. 5.
    H.B. Hollinger, The Journal of Chemical Physics, 36 (1962), 12, p. 3208.CrossRefGoogle Scholar
  6. 6.
    G. Verstraeten, Abstracts of the VIII International Congress of Logic, Methodology and Philosophy of Science, 2, Moscow, 1987, pp. 173–175.Google Scholar
  7. 6a.
    See also A. Grünbaum, Philosophical Problems of Space and Time, D. Reidel Publishing Company, Dordrecht, 1973, pp. 193–197.Google Scholar
  8. 7.
    M. Bunge, Foundations of Physics, Springer Tracts in Natural Philosophy, 10 (1987), pp. 108–112.Google Scholar
  9. 8.
    A. Khinchin, Mathematical Foundations of Statistical Mechanics, New York: Dover, 1949, pp. 131–135.Google Scholar
  10. A. Khinchin, Mathematical Foundations of Statistical Mechanics, New York: Dover, 1949, pp. 136–139.Google Scholar
  11. A. Khinchin, Mathematical Foundations of Statistical Mechanics, New York: Dover, 1949, pp. 138–139.Google Scholar
  12. A. Grünbaum, Mathematical Foundations of Statistical Mechanics, New York: Dover, 1949, pp. 138–139.Google Scholar
  13. A. Khinchin, Mathematical Foundations of Statistical Mechanics, New York: Dover, 1949, pp. 19–29.Google Scholar
  14. A. Khinchin, Mathematical Foundations of Statistical Mechanics, New York: Dover, 1949, pp. 19–29.Google Scholar
  15. A. Khinchin, Mathematical Foundations of Statistical Mechanics, New York: Dover, 1949, pp. 29–32.Google Scholar
  16. O. Penrose, Foundations of Statistical Mechanics, p. 199.Google Scholar
  17. I. Prigogine, From Being to Becoming, San Franciscos: W.H. Freeman and Co., 1979, pp. xiii–xiv.Google Scholar
  18. M. Bunge, Foundations of Physics, p. 71.Google Scholar
  19. 18.
    G.C.R. Lochak, Acad. Sc. Paris, t. 258, pp 1999–2002 and pp. 3172–3175, and G. Lochak, Institut Henri Poincaré, Paris et Laboratoire de Physique nucléaire, Orsay, Séance du 13 juin 1962.Google Scholar
  20. 19.
    B. Misra, Proc. Natl. Acad. Sci., U.S. 75 (1978), p. 1629.CrossRefGoogle Scholar
  21. B. Misra, Proc. Natl. Acad. Sci., U.S. 75 (1978), p. 1629.CrossRefGoogle Scholar
  22. I. Prigogine, From Being to Becoming, pp. 171–173 and 187–188.Google Scholar
  23. 22.
    See footnote 6 as well as G. Verstraeten, Lecture notes in Physics (series Proceeding of the First International Conference on the Physics of Phase Space), College Park, Maryland, U.S.A., May 20–23, 1986.Google Scholar
  24. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, 1975, Theorem VIII. 8.X.39, corollary 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Guido J. M. Verstraeten
    • 1
  1. 1.Catholic University of LeuvenBelgium

Personalised recommendations