Skip to main content

Condensation with Noncondensables and in Multicomponent Mixtures

  • Chapter
Two-Phase Flow Heat Exchangers

Part of the book series: NATO ASI Series ((NSSE,volume 143))

Abstract

The condensation rate of a vapor can be significantly reduced if a noncondensable is present or if the vapor is one component of a multicomponent system. The reduction is caused by the noncondensables and/or more volatile components lowering the dew point of the vapor and by a mass transfer resistance to the condensing component resulting from a build up of a layer of noncondensables or more volatile components at the liquid vapor interface. The parametric trends associated with and the controlling mechanism of condensation with noncondensables and in multicomponent mixtures are reviewed, relevant research is discussed, and current design methods are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merte, H, Jr., Condensation Heat Transfer, in Adv. in Heat Trans., Ed. T. F. Irvine and J. P. Hartnett, Academic Press, New York, pp. 181–272, 1973.

    Google Scholar 

  2. Westwater, J. W., Condensation, in Heat Transfer in Energy Problems, Ed. T. Mizushina and W.-J. Yang, Hemisphere Publishing Corporation, Washington, D.C., pp. 81–92, 1983.

    Google Scholar 

  3. Marto, P., Heat Transfer and Two-Phase Flow During Shell-Side Condensation, ASME-JSMB Thermal Engineering Joint Conf. Proc., Vol. 2, pp. 561–691, 1983.

    Google Scholar 

  4. Marto, P., Heat Transfer and Two-Phase Flow During Shell-Side Condensation, Heat Trans. Engng., Vol. 5, Nos. 1–2, pp. 31–61, 1984.

    Google Scholar 

  5. Shah, M. M., Heat Transfer During Film Condensation in Tubes and Annuli: A Review of the Literature, ASHRAE Trans., Vol. 87, Part 1, pp. 1086–1105, 1981.

    Google Scholar 

  6. Webb, R. L. and Wanniarachchi, A. S., The Effect of Noncondensable Gases in Water Chiller Condensers-Literature Survey and Theoretical Predictions, ASHRAE Trans., Vol. 86, Part 1, pp. 142–159, 1980.

    Google Scholar 

  7. Chisholm, D., Modern Developments in Marine Condensers: Non-Condensable Gases: An Overview, in Power Condenser Heat Transfer Technology, Ed. P. J. Marto and R. H. Nunn, Hemisphere Publishing Corporation, Washington, D.C., pp. 95–142, 1981.

    Google Scholar 

  8. Sardesai, R. G., Shock, R. A. W. and Butterworth, D., Heat and Mass Transfer in Multicomponent Condensation and Boiling, Heat Trans. Engng., Vol. 3, Nos. 3–4, pp. 104–114, 1982.

    Google Scholar 

  9. Collier, J. G., Convective Boiling and Condensation, 2nd Ed., McGraw-Hill Book Company, London, 1981.

    Google Scholar 

  10. Sparrow, E. M., Minkowycz, W. J. and Saddy, M., Forced Convection Condensation in the Presence of Noncondensables and Interfacial Resistance, Int. J. Heat Mass Trans., Vol. 10, pp. 1829–1845, 1967.

    Google Scholar 

  11. Minkowycz, W. J. and Sparrow, E. M., Condensation Heat Transfer in the Presence of Noncondensables, Interfacial Resistance, Superheating, Variable Properties, and Diffusion, Int. J. Heat Mass Trans., Vol. 9, pp. 1125–1144, 1966.

    Google Scholar 

  12. Sparrow, E. M. and Lin, S. H., Condensation Heat Transfer in the Presence of a Noncondensable Gas, J. Heat Trans., Vol. 86, pp. 430–436, 1964.

    Google Scholar 

  13. Rose, J. W., Condensation of a Vapour in the Presence of a Non-Condensing Gas, Int. J. Heat Mass Trans., Vol. 12, pp. 233–237, 1969.

    Google Scholar 

  14. Denny, V. E., Mills, A. F. and Jusionis, V. J., Laminar Film Condensation From Steam-Air Mixture Undergoing Forced Flow Down a Vertical Surface, J. Heat Trans., Vol. 93, pp. 297–304, 1971.

    Google Scholar 

  15. Denny, V. E. and South, V., III, Effects of Forced Flow, Noncondensables and Variable Properties on Film Condensation of Pure and Binary Vapors at the Forward Stagnation Point of a Horizontal Cylinder, Int. J. Heat Mass Trans., Vol. 15, pp. 2133–2142, 1972.

    Google Scholar 

  16. Denny, V. E. and Jusionis, V. J., Effects of Forced Flow and Variable Properties on Binary Film Condensation, Int. J. Heat Mass Trans., Vol. 15, pp. 2143–2153, 1972.

    Google Scholar 

  17. Othmer, D. F., The Condensation of Steam, Ind. Engng. Chem., Vol. 21, pp. 577–583, 1929.

    Google Scholar 

  18. Votta, F., Jr. and Walker, C. A., Condensation of Vapor in the Presence of Noncondensing Gas, AIChE J., Vol. 4, pp. 413–417, 1958.

    Google Scholar 

  19. Rauscher, J. W., Mills, A, F. and Denny, V. E., Experimental Study of Film Condensation from Steam-Air Mixtures Flowing Downward Over a Horizontal Tube, J. Heat Trans., Vol. 96, pp. 83–88, 1974.

    Google Scholar 

  20. Clements, L. D. and Colver, C. P., Film-wise Condensation of Light Hydrocarbons and Their Mixtures in a Vertical Reflux Condenser, AIChE Symp. Ser. No. 131, Vol. 69, pp. 18–22, 1973.

    Google Scholar 

  21. Wang, J. C. Y., Turaga, M., Lin, S. and Fazio, P., Effects of Refrigerant-Oil Mixtures on Condensation Heat Transfer on the External Surface of Horizontal Tubes in Water-Cooled Shell-and-Tube Condensers, ASHRAE Trans., Vol. 90, Part 1B, pp. 26–38, 1984.

    Google Scholar 

  22. Baker, E. M. and Mueller, A. C., Condensation of Vapors on a Horizontal Tube, Ind. Engng. Chem., Vol. 29, pp. 1065–1072, 1937.

    Google Scholar 

  23. Kirkbride, C. G., Heat Transmission by Condensing Pure and Mixed Substances on Horizontal Tubes, Ind. Engng. Chem., Vol. 25, pp. 1324–1331, 1933.

    Google Scholar 

  24. Estrin, J., Hayes, T. W. and Drew, T. B., The Condensation of Mixed Vapors, AIChE J., Vol. 11, pp. 800–803, 1965.

    Google Scholar 

  25. Pressburg, B. S. and Todd, J. B., Heat Transfer Coefficients for Condensing Organic Vapors of Pure Components and Binary Mixtures, AIChE J., Vol, 3, pp. 348–352, 1957.

    Google Scholar 

  26. Abdul’Manov, K. A. and Mirmov, N. I., Experimental Study of Heat Transfer from Oil-Contaminated Ammonia Vapor Condensing on Horizontal Tubes, Heat Trans.-Sov. Res., Vol. 3, No. 6, pp. 176–180, 1971.

    Google Scholar 

  27. Al-Diwany, H. K. and Rose, J. W., Free Convection Film Condensation of Steam in the Presence of Non-Condensing Gases, Int. J. Heat Mass Trans., Vol. 16, pp. 1359–1369, 1973.

    Google Scholar 

  28. Siegers, L. and Seban, R. A., Laminar Film Condensation of Steam Containing Small Concentrations of Air, Int. J. Heat Mass Trans., Vol. 13, pp. 1941–1949, 1970.

    Google Scholar 

  29. Goto, M and Fujii, T., Film Condensation of Binary Refrigerant Vapours on a Horizontal Tube, 7th Int. Heat Trans. Conf., Munich, Vol. 5, pp. 71–76, 1982.

    Google Scholar 

  30. Taitel, Y. and Tamir A., Condensation in the Presence of a Non-condensable Gas in Direct Contact, Int. J. Heat Mass Trans., Vol. 12, pp. 1157–1169, 1969.

    Google Scholar 

  31. Sage, F. E. and Estrin, J., Film Condensation From a Ternary Mixture of Vapors Upon a Vertical Surface, Int. J. Heat Mass Trans., Vol. 19, pp. 323–333, 1976.

    Google Scholar 

  32. Webb, R. L., Wanniarachchi, A. S., and Rudy, T. M., The Effect of Noncondensable gases on the Performance of an R-11 Centrifugal Water Chiller Condenser, ASHRAE Trans., Vol. 86, Part 2, pp. 57–67, 1980.

    Google Scholar 

  33. Wanniarachchi, A. S. and Webb, R. L., Noncondensable Gases in Shell-Side Refrigerant Condensers, ASHRAE Trans., Vol. 88, Part 2, pp. 170–184, 1982.

    Google Scholar 

  34. Morgan, C. D. and Rush, G. C., Experimental Measurements of Condensation Heat Transfer with Noncondensable Gases Present in a Vertical Tube at High Pressure, in Heat Exchangers for Two-Phase Applications, ASME, New York, pp. 91–98, 1983.

    Google Scholar 

  35. DeVuono, A. C. and Christensen, R. N., Experimental Investigation of the Pressure Effects on Film Condensation of Steam-Air Mixtures at Pressure Above Atmosphere, in Fundamentals of Phase Change: Boiling and Condensing, Ed. C. T. Avedisian and T. M. Rudy, ASME, New York, pp. 73–80, 1984.

    Google Scholar 

  36. Fratzscher, W., Experiments on Heat Transfer in Inertgas-Vapor-Mixtures for Middle Pressures, 6th Int. Heat Trans. Conf., Toronto, Vol. 2, pp. 449–452, 1978.

    Google Scholar 

  37. Morgan, C. D., An Analysis of Condensation Heat Transfer with Noncondensable Gases Present in a Vertical Tube at High Pressure, in Heat Exchangers for Two-Phase Applications, Ed. J. B. Kitto Jr. and J. M. Robertson, ASME, New York, pp. 83–89, 1983.

    Google Scholar 

  38. Stern, F. and Votta, F., Jr., Condensation from Superheated Gas-Vapor Mixtures, AIChE J., Vol. 14, pp, 928–933, 1968.

    Google Scholar 

  39. Kroger, D. G. and Rohsenow, W. M., Condensation Heat Transfer in the Presence of a Non-Condensable Gas, Int. J. Heat Mass Trans., Vol. 11, pp. 15–26, 1968.

    Google Scholar 

  40. Smol’skiy, B. M. and Bogachev, V. S., Heat and Mass Transfer in the Case of Removal of the Condensing Component from Binary Gas Mixtures by Suction Through the Porous Walls of the Channel, Heat Trans.-Sov.Res., Vol. 10, No. 5, pp. 74–78, 1978.

    Google Scholar 

  41. Colburn, A. P. and Drew, T. B., The Condensation of Mixed Vapors, AIChE Trans., Vol. 33, pp. 197–215, 1937.

    Google Scholar 

  42. Tanner, D. W., Potter, C. J., Pope, D. and West, D., Heat Transfer in Dropwise Condensation-Part I. The Effects of Heat Flux, Steam Velocity and Non-Condensable Gas Concentration, Int. J. Heat Mass Trans., Vol. 8, pp. 419–426, 1965.

    Google Scholar 

  43. LeFevre, E. J. and Rose, J. W., An Experimental Study of Heat Transfer by Dropwise Condensation, Int. J. Heat Mass Trans., Vol. 8, pp. 1117–1133, 1965.

    Google Scholar 

  44. Tanner, D. W., Pope, D., Potter, C. J. and West, D., Heat Transfer in Dropwise Condensation of Low Steam Pressures in the Absence and Presence of Non-Condensable Gas, Int. J. Heat Mass Transfer. Vol. 11, pp. 181–190, 1968.

    Google Scholar 

  45. Citakoglu, E. and Rose, J. W., Dropwise Condensation—Some Factors Influencing the Validity of Heat Transfer Measurements, Int. J. Heat Mass Trans., Vol. 11, pp. 523–537, 1968.

    Google Scholar 

  46. Jacobs, H. R. and Nadig, R., Condensation on an Immiscible Falling Film in the Presence of a Noncondensable Gas, in Heat Exchangers for Two-Phase Applications, Ed. J. B. Kitto Jr. and J. M. Robertson, ASME, New York, pp. 99–106, 1983.

    Google Scholar 

  47. Sadek, S. S., Condensation of Steam in the Presence of Air, Experimental Mass Transfer Coefficient in a Direct Contact System, I&EC Fundam., Vol. 7, pp. 321–324, 1968.

    Google Scholar 

  48. Polley, G. T, and Calus, W. F., Condensation of Binary Mixtures of Vapours of Immiscible Liquids with Channelling Flow of the Condensate, 7th Int. Heat Trans. Conf., Munich, Vol. 5, pp. 195–203, 1982.

    Google Scholar 

  49. Bernhardt, S. H., Sheridan, J. J. and Westwater, J. W., Condensation of Immiscible Mixtures, AIChE Symp. Ser. No. 118, Vol, 68, pp. 21–37, 1972.

    Google Scholar 

  50. Hazelton, R. and Baker, E. M., Condensation of Vapors of Immiscible Liquids, Trans. AIChE, Vol. 40, pp. 1–28, 1944.

    Google Scholar 

  51. Akers, W. W. and Turner, M. M., Condensation of Vapors of Immiscible Liquids, AIChE J., Vol. 8, pp. 587–589, 1962.

    Google Scholar 

  52. Sykes, J. A. and Marchello, J. M., Condensation of Immiscible Liquids on Horizontal Tube, I&EC Process Pes. Develop., Vol. 9, pp. 63–71, 1970.

    Google Scholar 

  53. Sardesai, R. G. and Webb, D. R., Condensation of Binary Vapours of Immiscible Liquids, Chem. Engng. Sci., Vol. 37, pp. 529–537, 1982.

    Google Scholar 

  54. Colburn, A. P. and Hougen, O. A., Design of Cooler Condensers for Mixtures of Vapors with Noncondensing Gases, Ind. Engng. Chem., Vol. 26, pp. 1178–1182, 1934.

    Google Scholar 

  55. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, New York, 1960.

    Google Scholar 

  56. Kent, E. R. and Pigford, R. L., Fractionation During Condensation of Vapor Mixtures, AIChE J., Vol. 2, pp. 363–371, 1956.

    Google Scholar 

  57. Onda, K., Sada, E. and Takahashi, K., The Film Condensation of Mixed Vapour in a Vertical Column, Int. J. Heat Mass Trans., Vol. 13, pp. 1415–1424, 1970.

    Google Scholar 

  58. Toor, H. L., Solution of the Linearized Equations of Multicomponent Mass Transfer: I. AIChE J., Vol. 10, pp. 448–455, 1964.

    Google Scholar 

  59. Toor, H. L., Solution of the Linearized Equations of Multicomponent Mass Transfer: II, Matrix Methods, AIChE J., Vol. 10, pp. 460–465, 1964.

    Google Scholar 

  60. Rose, J. W., Approximate Equations for Forced-Convection Condensation in the Presence of a Non-Condensing Gas on a Fla Plate and Horizontal Tube, Int. J. Heat Masa Trans., Vol, 23, pp. 539–546, 1980

    Google Scholar 

  61. Kotake, S. and Oswatitsch, K., Parameters of Binary-Mixture Film Condensation, Int. J. Heat Mass Trans., Vol. 23, pp. 1405–1416, 1980.

    MATH  Google Scholar 

  62. Sparrow, E. M. and Eckert, E. R. G., Effects of Superheated Vapor and Non Condensable Gases on Laminar Film Condensation, AIChE J., Vol. 7, pp. 473–477, 1961.

    Google Scholar 

  63. Sparrow, E. M. and Marshall, E., Binary Gravity-Flow Film Condensation, J. Heat Trans., Vol. 91, pp. 205–211, 1969.

    Google Scholar 

  64. Tamir, A., Condensation of Binary Mixtures of Miscible Vapors, Int. J. Heat Mass Trans., Vol. 16, pp. 683–685, 1973.

    Google Scholar 

  65. Cardner, D. V. and Heliums, J. D., Simultaneous Heat and Mass Transfer in Laminar Free Convection with a Moving Interface, I&EC Fundam., Vol. 6, pp. 376–380, 1967.

    Google Scholar 

  66. Lucas, K., Laminar Film Condensation with Non-Condensing Gases in Tubes, 6th Int. Heat Conf., Toronto, Vol. 2, pp. 443–447, 1978.

    MathSciNet  Google Scholar 

  67. Schroppel, J., Impact of Wall Temperature Variation on the Film Condensation of Binary Gas-Vapour Mixtures, Int. J. Heat Mass Trans., Vol. 24, pp. 165–170, 1981.

    Google Scholar 

  68. Vizel, Y. M. and Mostinskiy, I. L., Mass Transfer in Vapor Condensing from a Moving Vapor-Gas Mixture, Heat Trans.-Sov. Res., Vol. 1, No. 2, pp. 97–105, 1969.

    Google Scholar 

  69. Rose, J. W., Condensation in the Presence of Noncondensing Gases, in Power Condenser Heat Transfer Technology, Ed. P. J. Marto and R. H. Nunn, Hemisphere Publishing Corporation, Washington, D.C., pp. 151–162, 1981.

    Google Scholar 

  70. Mochizuki, S., Yagi, Y. and Tadano, R., Convective Filmwise Condensation of Nonazeotropic Binary Mixtures in a Vertical Tube, J. Heat Trans., Vol. 106, pp. 531–538, 1984.

    Google Scholar 

  71. Fujii, T. and Koyama, S., Laminar Forced Convection Condensation of a Ternary Vapor Mixture on a Flat Plate, in Fundamentals of Phase Change: Boiling and Condensation, Ed. C. T. Avedisian and T. M. Rudy, ASME, New York, pp. 81–87, 1984.

    Google Scholar 

  72. Lee, W. C. and Rose, J. W., Forced Convection Film Condensation on a Horizontal Tube with and without Non-Condensing Gases, Int. J. Heat Mass Trans., Vol. 27, pp. 519–528, 1984.

    Google Scholar 

  73. Lee, W. C. and Rose, J. W., Comparison of Calculation Methods for Non-Condensing Gas Effects in Condensation on a Horizontal Tube, I. Chem. E. Symp. Ser. No. 75, pp. 342–355, 1983.

    Google Scholar 

  74. Tichy, J. A., Macken, N. A. and Duval, W., An Analytical Model for Condensing and Evaporating Two-Component Two-Phase Annular Flow, 7th Int. Heat Trans. Conf., Munich, Vol. 5, pp. 161–166, 1982.

    Google Scholar 

  75. Fillo, J. A., Condensation Wall Heat Transfer in Presence of Non-Condensable Gas, ASME Paper No. 85-WA/HT-26, 1985.

    Google Scholar 

  76. Renz, U. and Odenthal, H P., Numerical Prediction of Heat and Mass Transfer During Condensation from a Turbulent Vapour/Gas Stream onto a Vertical Liquid Film, in Condensation Heat Transfer. Ed. P. J. Marto and P. G. Kroeger, ASME, New York, pp. 27–33, 1979.

    Google Scholar 

  77. Chilton, T. H. and Colbum, A. P., Mass Transfer Coefficients: Predictions from Data in Heat Transfer and Fluid Friction, Ind. Engng. Chem., Vol. 26, pp. 1183–1187, 1934.

    Google Scholar 

  78. Bras, G. H., Design of Cooler Condensers for Vapor-Gas Mixtures-I, Chem. Engng., pp. 223–226, April 1953.

    Google Scholar 

  79. Bras, G. H., Design of Cooler Condensers for Vapor-Gas Mixtures-II, Chem. Engng., pp. 238–240, May 1953.

    Google Scholar 

  80. Bras, G. H. P., A Graphical Method for the Calculation of Cooler-Condensers, Chem. Engng. Sci., Vol. 6, pp. 277–282, 1957.

    Google Scholar 

  81. Bras, G. H. P., The Graphical Determination of Changes in the Gas Phase Due to Simultaneous Heat and Mass Transfer, Chem. Engng. Sci., Vol. 9, pp. 176–181, 1958.

    Google Scholar 

  82. Hulden, B., Condensation of Vapours from Gas-Vapour Mixtures, An Approximate Method of Design, Chem. Engng. Sci., Vol. 7, pp. 60–65, 1957.

    Google Scholar 

  83. Votta, F., Jr., Condensing From Vapor-Gas Mixtures, Chem. Engng., Vol. 71, Part 2, pp. 223–228, 1964.

    Google Scholar 

  84. Mizushina, T., Hashimoto, N. and Nakajima, M., Design of Cooler Condensers for Gas-Vapour Mixtures, Chem. Engng. Sci., Vol. 9, pp. 195–204, 1959.

    Google Scholar 

  85. Mizushina, T., Nakajima, M. and Oshima, T., Study on Cooler Condensers for Gas-Vapour Mixtures, Chem. Engng. Sci., Vol. 13, pp. 7–17, 1960.

    Google Scholar 

  86. Mizushina, T., Ueda, H., Ikeno, S. and Ishii, K., Simplified Calculation for Cooler Condensers for Gas-Multicomponent Vapour Mixtures, Int. J. Heat Mass Trans., Vol. 7, pp. 95–100, 1964.

    Google Scholar 

  87. Porter, K. E. and Jeffreys, G. V., The Design of Cooler-Condensers for the Condensation of Binary Vapours in the Presence of a Non-Condensable Gas, Trans. Instn. Chem. Engrs., Vol. 41, pp. 126–139, 1963.

    Google Scholar 

  88. Griffith, P., Film Condensation, in Handbook of Multiphase Systems, Ed. G. Hetsroni, Hemisphere Publishing Corporation, Washington, D.C., pp. 5–5–5–21, 1982.

    Google Scholar 

  89. O’Brien, N. G., Franks, R. G., and Munson, J. K., Calculation of the Performance of a Mixed-Vapor Condenser by Analogous Computation, Chem. Engng. Prog. Symp. Ser. No. 29, Vol. 55, pp. 177–185, 1959.

    Google Scholar 

  90. Toor, H. L., Diffusion in Three-Component Gas Mixtures, AIChE J., Vol. 3, pp. 198–207, 1957.

    Google Scholar 

  91. Stewart, W. E. and Prober, R., Matric Calculation of Multicomponent Mass Transfer in Isothermal Systems, I&EC Fund., Vol. 3, pp. 224–235, 1964.

    Google Scholar 

  92. Schrodt, J. T., Simultaneous Heat and Mass Transfer from Multicomponent Condensing Vapor-Gas Systems, AIChE J., Vol. 19, pp. 753–759, 1973.

    Google Scholar 

  93. Krishna, R. and Standart, G. L., A Multicomponent Film Model Incorporating a General Matrix Method of Solution to the Maxwell-Stephan Equations, AIChE J., Vol. 22, pp. 383–389, 1976.

    Google Scholar 

  94. Krishna, R. and Standart, G. L., Mass Energy Transfer in Multicomponent Mixtures, Chem. Eng. Commun., Vol. 3, pp. 201–275, 1979.

    Google Scholar 

  95. Krishna, R., Panchal, C. B., Webb, D. R. and Coward, I., An Ackermann-Colburn and Drew Type Analysis for Condensation of Multicomponent Mixtures, Lett, Heat Mass Tran., Vol. 3, pp. 163–172, 1976.

    Google Scholar 

  96. Krishna, R. and Panchal, C. B., Condensation of a Binary Vapour Mixture in the Presence of an Inert Gas, Chem. Engng. Sci., Vol. 32, pp. 741–745, 1977.

    Google Scholar 

  97. Krishna, R., Effect of Nature and Composition of Inert Gas on Binary Vapour Condensation, Lett. Heat Mass Trans., Vol. 6, pp. 137–147, 1979.

    Google Scholar 

  98. Krishna, R., A Simplified Mass Transfer Analysis for Multicomponent Condensation, Lett. Heat Mass Tran., Vol. 6, pp. 439–448, 1979.

    Google Scholar 

  99. Taylor, R. and Webb, D. R., Stability of the Film Model for Multicomponent Mass Transfer, Chem. Engng. Commun., Vol. 6, pp. 175–189, 1980.

    Google Scholar 

  100. Taylor, R. and Webb, D. R., On the Relationship Between the Exact and Linearized Solutions of the Maxwell-Stephan Equations for the Multicomponent Film Model, Chem. Engng. Commun., Vol. 7, pp. 287–299, 1980.

    Google Scholar 

  101. Webb, D. R., Panchal, C. B. and Coward, I., The Significance of Multicomponent Diffusional Interactions in the Process of Condensation in the Presence of a Noncondensable Gas, Chem. Engng. Sci., Vol. 36, pp. 87–95, 1981.

    Google Scholar 

  102. Taylor, R. and Webb, D. R., Film Models for Multicomponent Mass Transfer: Computational Methods: The Exact Solution of the Maxwell-Stephan Equations, Computers and Chem. Engng., Vol. 5, pp. 61–73, 1981.

    Google Scholar 

  103. Webb, D. R. and Taylor, R., The Efficient Estimation of Rates of Multicomponent Condensation by a Film Model, Chem. Engng. Sci., Vol. 37, pp. 117–119, 1982.

    Google Scholar 

  104. Webb, D. R. and Sardesai, R. G., Verification of Multicomponent Mass Transfer Models for Condensation Inside a Vertical Tube, Int. J. Multiphase Flow. Vol. 7, pp. 507–520, 1981.

    Google Scholar 

  105. Krishna, R., Comments on “Verification of Multicomponent Mass Transfer Models for Condensation Inside a Vertical Tube,” Int. J. Multiphase Flow. Vol. 9, pp. 451–453, 1983.

    Google Scholar 

  106. Webb, D. R. and Sardesai, R. G., Reply to Comments on “Verification of Multicomponent Mass Transfer Models for Condensation Inside a Vertical Tube,” Int. J. Multiphase Flow, Vol. 9, pp. 455–457, 1983.

    Google Scholar 

  107. Webb, D. R., Heat and Mass Transfer in Condensation of Multicomponent Vapours, 7th Int. Heat Trans. Conf., Munich, Vol. 5, pp. 167–174, 1982.

    Google Scholar 

  108. Webb, D. R. and Panagoulias, D., An Improved Approach to Condenser Design Using Film Models, Int. J. Heat Mass Transfer, Vol. 30, pp. 373–378, 1987.

    Google Scholar 

  109. Taylor, R., Krishnamurthy, R., Furno, J. S., and Krishna, R., Condensation of Vapor Mixtures. 1. Nonequilibrium Models and Design Procedures, I&EC Proc. Pes. Dev., Vol. 25, pp. 83–97, 1986.

    Google Scholar 

  110. Furno, J. S., Taylor, R., and Krishna, R., Condensation of Vapor Mixtures. 2. Comparison with Experiment, I&EC Proc. Pes. Dev., Vol. 25, pp. 98–101, 1986.

    Google Scholar 

  111. Sardesai, R. G., Palen, J. W. and Taborek, J., Modified Resistance Proration Method for Condensation of Vapor Mixtures, AIChE Symp. Ser. No. 225, Vol. 79, pp. 41–46, 1983.

    Google Scholar 

  112. Owen, R. G., Sardesai, R. G. and Pulling, D. J., Transfer Coefficients for Binary Condensation in a Vertical Tube, ASME Paper No. 80-HT-55, 1980.

    Google Scholar 

  113. Price, B. C. and Bell, K. J., Design of Binary Vapor Condensers Using the Colburn-Drew Equations, AIChE Symp. Ser. No. 138, Vol. 70, pp. 163–171, 1974.

    Google Scholar 

  114. Ackermann, G., Heat Transfer and Molecular Mass Transfer in the Same Field of High Temperatures and Large Partial Pressure Differences, Ver. Deutsch, Ing. Forschungsheft, Vol. 8, No. 382, pp. 1–10, 1937.

    MathSciNet  Google Scholar 

  115. Bandrowski, J. and Kubaczka, A., On the Condensation of Multicomponent Vapours in the Presence of Inert Gases, Int. J. Heat Mass Trans., Vol. 24, pp. 147–153, 1981.

    Google Scholar 

  116. Standi ford, F. C., Effect of Non-Condensables on Condenser Design and Heat Transfer, Chem. Engng. Prog., Vol. 75, pp. 59–62, 1979.

    Google Scholar 

  117. Gulley, D. L., How to Calculate Weighted WTD’s, Hydrocarbon Processing, Vol. 45, pp. 116–122, 1966.

    Google Scholar 

  118. Bell, K. J. and Ghaly, M. A., An Approximate Generalized Design Method for Multicomponent/Partial Condensers, AIChE Symp. Ser. No. 131, Vol. 69, pp, 72–79, 1973.

    Google Scholar 

  119. Kern, D Q., Process Heat Transfer, McGraw-Hill Book Company, New York, 1950.

    Google Scholar 

  120. Gloyer, W., Thermal Design of Mixed Vapor Condensers Part 1, Hydrocarbon Processing, Vol. 49, No. 6, pp. 103–110, 1970.

    Google Scholar 

  121. Gloyer, W., Thermal Design of Mixed Vapor Condensers Part 2, Hydrocarbon Processing, Vol. 49, No. 7, pp. 107–110, 1970.

    Google Scholar 

  122. Silver, L., Gas Cooling with Aqueous Condensation, Instn. Chem. Engrs. Trans., Vol. 25, pp. 30–42, 1947.

    Google Scholar 

  123. Ward, D. E., How to Design a Multiple Component Partial Condenser, Petro/Chem. Eng., pp. C42-C48, October 1960.

    Google Scholar 

  124. McNaught, J. M., Mass Transfer Correction Terms in Design Methods for Multi-Component/Partial Condensers, in Condensation Heat Transfer, Ed. P. J. Marto and P. G. Kroeger, ASME, New York, pp. 111–118, 1979.

    Google Scholar 

  125. Butterworth, D., Condensation of Vapor Mixtures, in Heat Exchanger Design Handbook, Ed. E.U. Schlunder, Hemisphere Publishing Corporation, Washington, D.C., Vol. 2, pp. 2.6.3–1–2.6.3–10, 1983.

    Google Scholar 

  126. Khan, R. A., Effect of Noncondensables in Sea Water Evaporators, Chem. Engng. Prog., Vol. 68, pp. 79–80, 1972.

    Google Scholar 

  127. Butterworth, D., Condensing Equipment, in Handbook of Multiphase Systems, Ed. G. Hetsroni, Hemisphere Publishing Corporation, Washington, D.C., pp. 5–33–5–64, 1982.

    Google Scholar 

  128. Owens, W. L., Noncondensable Gas Removal in Closed Cycle OTEC Plants, in Power Condenser Heat Transfer Technology, Ed. P. J. Marto and R. H. Nunn, Hemisphere Publishing Corporation, Washington, D.C., pp. 143–150, 1981.

    Google Scholar 

  129. Coit, R. L., A Designer’s Approach to Surface Condenser Venting and Deareation, in Power Condenser Heat Transfer Technology, Ed. P. J. Marto and R. H. Nunn, Hemisphere Publishing Corporation, Washington, D.C., pp. 163–180, 1981.

    Google Scholar 

  130. Colburn, A. P. and Edison, A. G., Prevention of Fog in Cooler-Condensers, Ind. Engng. Chem., Vol. 33, pp. 457–458, 1941.

    Google Scholar 

  131. Steinmeyer, D. E., Fog Formation in Partial Condensers, Chem. Engng. Prog., Vol. 68, pp. 64–68, 1972.

    Google Scholar 

  132. Steinmeyer, D. E. and Mueller, A. C., Why Condensers Don’t Operate as They are Supposed To, Chem. Engng. Prog., Vol. 70, pp. 78–82, 1974.

    Google Scholar 

  133. Hewitt, G. F., Introduction to Two Phase Flow Problems in the Process Industry, in Two-Phase Flow and Heat Transfer in the Power and Process Industries, Ed. A. E. Bergles et al., Hemisphere Publishing Corporation, Washington, D.C., pp. 508–519, 1981. a

    Google Scholar 

  134. Grant, I. D. R., Condenser Performance—The Effect of Different Arrangements for Venting Noncondensing Gases, British Chem. Engng., Vol. 14, No. 12, pp. 1709–1711, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jensen, M.K. (1988). Condensation with Noncondensables and in Multicomponent Mixtures. In: Kakaç, S., Bergles, A.E., Fernandes, E.O. (eds) Two-Phase Flow Heat Exchangers. NATO ASI Series, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2790-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2790-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7755-2

  • Online ISBN: 978-94-009-2790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics