Skip to main content

Fundamentals of Boiling and Evaporation

  • Chapter
Two-Phase Flow Heat Exchangers

Part of the book series: NATO ASI Series ((NSSE,volume 143))

Abstract

The fundamentals of pool boiling and forced convection boiling heat transfer are described in this chapter. Typical correlations for the various boiling modes or flow regimes are presented. The emphasis is on simple geometries such as a single tube in a large pool and a single vertical circular tube. Mention is made of practical problems such as boiling curve hysteresis resulting from difficult nucleation, shifts in the boiling curve due to dissolved gas, and surface or fluid contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nukayama, S., The Maximum and Minimum Value of the Heat Q Transmitted from metal to boiling water under atmospheric pressure, Journal Japan Society of Mechanical Engineers, Vol. 37, pp. 367–374. Translation in Int. Journal of Heat and Mass Transfer, Vol. 9, pp. 1419–1433, 1966.

    Article  Google Scholar 

  2. Merte, H., Jr. and Clark J. A., Boiling Heat Transfer with Cryogenic Fluids at Standard, Fractional, and Near-Zero Gravity, Journal of Heat Transfer, Vol. 86, pp. 351–359, 1964.

    Google Scholar 

  3. Bergles, A. E. and Thompson, W. G., Jr., The Relationship of Quench Data to Steady-State Pool Boiling Data, Int. Journal of Heat and Mass Transfer, Vol. 13, pp. 55–68, 1970.

    Article  Google Scholar 

  4. Sakurai, A. and Shiotsu, M., Temperature-Controlled Pool Boiling Heat Transfer, Proc. 5th Int. Heat Transfer Conference, Vol. IV, Hemisphere Publishing Corporation, Washington, pp. 81–85, 1974.

    Google Scholar 

  5. Volmer, M., Kenetik der Phasenbildung, Steinkopf, Leipzig, Edwards Bros., Ann Arbor, 1945.

    Google Scholar 

  6. Clark, H. G., Strenge, P. S., and Westwater, J. W., Active Sites for Nucleation, Chemical Engineering Progress Symposium Series, Vol. 55, (29), pp. 103–110, 1959.

    Google Scholar 

  7. Griffith, P. and Wallis, J. D., The Role of Surface Conditions in Nucleate Boiling, Chemical Engineering Progress Symposium Series, Vol. 56, (30), pp. 49–63, 1960.

    Google Scholar 

  8. Mizukami, K., Stability of Bubble Nuclei and Nucleation in Isothermal Liquid, Review of Kobe University of Mercantile Marine, Part II, No. 27, pp. 99–108. 1979.

    Google Scholar 

  9. Heled, Y. and Orell, A., Characteristics of Active Nucleation Sites in Pool Boiling, Int. Journal of Heat and Mass Transfer, Vol. 10., pp. 553–554, 1967.

    Article  Google Scholar 

  10. Nail, J. P., Jr., Vachon, R. I., and Morehove, J., An SEM Study of Nucleation Sites in Pool Boiling from 304 Stainless Steel, Journal of Heat Transfer, Vol. 96, pp. 132–137, 1974.

    Article  Google Scholar 

  11. Lorenz, J. J., Mikic, B. B., and Rohsenow, W. M., A Gas Diffusion Technique for Determining Pool Boiling Nucleation Sites, Journal of Heat Transfer, Vol. 97, pp. 317–319, 1975.

    Article  Google Scholar 

  12. Eddington, R. I., Kenning, D. B. R., and Korneichev, A. I., Comparison of Gas and Vapor Bubble Nucleation on a Brass Surface in Water, Int. Journal of Heat and Mass Transfer, Vol. 21, pp. 855–862, 1978.

    Article  Google Scholar 

  13. Cooper, M. G. and Lloyd, A. J. P., Transient Local Heat Flux in Nucleate Boiling, Proc. 3rd Int. Heat Transfer Conf., Vol. 3, pp. 193–203, 1966.

    Google Scholar 

  14. Graham, R. W. and Hendricks, R. C., Assessment of Convection, Conduction and Evaporation in Nucleate Boiling, NASA TN D-3943, 1967.

    Google Scholar 

  15. Mikic, B. B. and Rohsenow, W. M., Bubble Growth Rates in Non-uniform Temperature Field, Progress in Heat and Mass Transfer, Part II, Pergamon Press, Oxford, pp. 283, 1969.

    Google Scholar 

  16. Mikic, B. B., Rohsenow, W. M., and Griffith, P., On Bubble Growth Rates, Int. Journal of Heat and Mass Transfer, Vol. 13, pp. 657–666, 1970.

    Article  Google Scholar 

  17. Fritz, W., Berechnung des Maximal Volumens von Dampfblasen, Physikalische Zeitschrift, Vol. 36, pp. 379–384, 1935.

    Google Scholar 

  18. Han, C. Y. and Griffith, P., The Mechanism of Heat Transfer in Nucleate Pool Boiling — Part I, Bubble Initiation, Growth and Departure, Int. Journal of Heat and Mass Transfer, Vol. 8, pp. 887–904, 1965.

    Article  MATH  Google Scholar 

  19. Han, C. Y. and Griffith, P., The Mechanism of Heat Transfer in Nucleate Pool Boiling — Part II, The Heat Flux — Temperature Difference Relation, Int. Journal of Heat and Mass Transfer, Vol. 8, pp. 905–914, 1965.

    Article  Google Scholar 

  20. Mikic, B. B. and Rohsenow, W. M., A New Correlation of Pool Boiling Data Including the Effect of Heating Surface Characteristics, Journal of Heat Transfer, Vol. 91, pp. 245–250, 1969.

    Google Scholar 

  21. Lorenz, J. J., Mikic, B. B., and Rohsenow, W. M., The Effect of Surface Conditions on Boiling Characteristics, Proc. 5th Int. Heat Transfer Conference, Vol. IV, Hemisphere Publishing Corporation, Washington, pp. 35–39, 1974.

    Google Scholar 

  22. Judd, R. L. and Hwang, K. S., A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation, Journal of Heat Transfer, Vol. 98, pp. 623–629, 1976.

    Article  Google Scholar 

  23. Jakob, M. and Fritz, W., Versuche über den Verdampfungsvorgang, Forschung auf dem Gebiete des Ingenieurwesens, Vol. 2, pp. 435–447, 1931.

    Article  Google Scholar 

  24. Berenson, P. J., Experiments on Pool Boiling Heat Transfer, Int. Journal of Heat and Mass Transfer, Vol. 5, pp. 985–999, 1962.

    Article  Google Scholar 

  25. Kim, C.-J. and Bergles, A. E., Structured Surfaces for Enhanced Nucleate Boiling, Heat Transfer Laboratory Report HTL-36, ISU-ERI-Ames-86220, Iowa State University, December 1985.

    Google Scholar 

  26. Rohsenow, W. M., A Method of Correlating Heat Transfer for Surface Boiling of Liquids, Transactions ASME, Vol, 34, pp. 969–976, 1952.

    Google Scholar 

  27. Rohsenow, W. M., Boiling, in Handbook of Heat Transfer, McGraw-Hill, New York, pp. 13–1 — 13–75, 1973.

    Google Scholar 

  28. Stephan, K. and Abdelsalam, M., Heat Transfer Correlations for Natural Convection Boiling, Int. Journal of Heat and Mass Transfer, Vol. 23, pp. 73–87, 1980.

    Article  Google Scholar 

  29. Cooper, M. G., Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties, in Advances in Heat Transfer, Vol. 16, Academic Press, New York, 1984.

    Google Scholar 

  30. Rohsenow, W. M. and Griffith, P., Correlation of Maximum Heat Transfer Data for Boiling of Saturated Liquids, Chemical Engineering Progress Symposium Series, Vol. 52, (18), pp. 47–49, 1956.

    Google Scholar 

  31. Kutateladze, S. S., A Hydrodynamic Theory of Changes in Boiling Process Under Free Convection, Izv. Akademia Nauk Otdelenie Tekh. Nauk, Vol. 4, pp. 529–536, AEC-tr-1441, 1954.

    Google Scholar 

  32. Zuber, N., On the Stability of Boiling Heat Transfer, Transactions ASME, Vol. 80, pp. 711–720, 1958.

    Google Scholar 

  33. Chang, Y. P. and Snyder, N. W., Heat Transfer in Saturated Boiling, Chemical Engineering Progress Symposium Series, Vol. 56, (30), pp. 25–38, 1960.

    Google Scholar 

  34. Moissis, R. and Berenson, P. J., On the Hydrodynamic Transitions in Nucleate Boiling, Journal of Heat Transfer, Vol. 85, pp. 221–229, 1963.

    Google Scholar 

  35. Wallis, G. G., Two-Phase Flow Aspects of Pool Boiling from a Horizontal Surface, AEEW-R 103, 1961.

    Google Scholar 

  36. Sun, K. H. and Lienhard, J. H., The Peak Pool Boiling Heat Flux on Horizontal Cylinders, Int. Journal of Heat and Mass Transfer, Vol. 13, pp. 1425–1439, 1970.

    Article  Google Scholar 

  37. Lienhard, J. H. and Dhir, V. K., Hydrodynamic Prediction of Peak Pool-Boiling Heat Fluxes from Finite Bodies, Journal of Heat Transfer, Vol. 95, pp. 152–158, 1973.

    Article  Google Scholar 

  38. Park, K.-A. and Bergles, A. E., The Critical Heat Flux for Horizontal Cylindrical Heaters, unpublished report, 1986.

    Google Scholar 

  39. Breen, B. P. and Westwater, J. W., Effect of Diameter of Horizontal Tubes on Film Boiling Heat Transfer, Chemical Engineering Progress, Vol. 58, (7), pp. 67–72, 1962.

    Google Scholar 

  40. Frederking, T. H. K. and Clark, J. A., Natural Convection Film Boiling on Sphere, in Advances in Cryogenic Engineering, Vol. 8, Plenum Publishing Corporation, New York, pp. 501–506, 1962.

    Google Scholar 

  41. Zuber, N., Tribus, M., and Westwater, J. W., The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids, Int. Developments in Heat Transfer — Part II, ASME, New York, pp. 230–235, 1961.

    Google Scholar 

  42. Berenson, P. J., Transition Boiling Heat Transfer from a Horizontal Surface, Journal of Heat Transfer, Vol. 83, pp. 351–358, 1961.

    Google Scholar 

  43. Bergles, A. E. and Rohsenow, W. M., The Determination of Forced-Convection Surface-Boiling Heat Transfer, Journal of Heat Transfer, Vol. 86, pp. 356–372, 1964.

    Google Scholar 

  44. Duke, E. E. and Shrock, V. E., Void Volume, Site Density and Bubble Size for Subcooled Nucleate Pool Boiling, Proc. of Heat Transfer and Fluid Mechanics Institute, Stanford University Press, pp. 130–145, 1961.

    Google Scholar 

  45. Ivey, H. J., Acceleration and the Critical Heat Flux in Pool Boiling Heat Transfer, Chartered Mechanical Engineer, Vol. 9, pp. 413–427, 1962.

    Google Scholar 

  46. Ponter, A. B. and Haigh, C. P., The Boiling Crisis in Saturated and Subcooled Pool Boiling at Reduced Pressures, Int. Journal of Heat and Mass Transfer, Vol. 12, pp. 429–437, 1969.

    Article  Google Scholar 

  47. Sparrow, E. M. and Cess, R. D., The Effect of Subcooled Liquid on Laminar Film Boiling, Journal of Heat Transfer, Vol. 84, pp. 149–156, 1962.

    Google Scholar 

  48. Pramuk, F. S. and Westwater, J. W., Effect of Agitation on the Critical Temperature Difference for a Boiling Liquid, Chemical Engineering Progress Symposium Series, Vol. 52, (18), pp. 79–83, 1956.

    Google Scholar 

  49. Yilmaz, S. and Westwater, J. W., Effect of Velocity on Heat Transfer to Boiling Freon-113, Journal of Heat Transfer, Vol. 102, pp. 26–31, 1980.

    Article  Google Scholar 

  50. Collier, J. G., Convective Boiling and Condensation, McGraw-Hill, Maidenhead, 1981.

    Google Scholar 

  51. McAdams, W. H., Kennel, W. E., Minden, C. S., Carl, R., Picornel, P. M., and Dew, J. E., Heat Transfer at High Rates to Water with Surface Boiling, Industrial and Engineering Chemistry, Vol. 41, pp. 1945–1953, 1949.

    Article  Google Scholar 

  52. Brown, W. T., Jr., A Study of Flow Surface Boiling, Ph.D. Thesis in Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass., 1967.

    Google Scholar 

  53. Jens, W. H. and Lottes, P. A., An Analysis of Heat Transfer, Burnout, Pressure Drop, and Density Data for High Pressure Water, Argonne National Laboratory Report ANL-4627, May 1951.

    Book  Google Scholar 

  54. Murphy, R. W. and Bergles, A. E., Subcooled Flow Boiling of Fluorocarbons-Hysteresis and Dissolved Gas Effects on Heat Transfer, in Proc. of Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, pp. 400–416, 1972.

    Google Scholar 

  55. Bergles, A. E., Burnout in Boiling Heat Transfer, Part II: Subcooled and Low Quality Forced-Convection Systems, Nuclear Safety, Vol. 18, pp. 154–167, 1977.

    Google Scholar 

  56. Chen, J. C., A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow, Industrial and Engineering Chemistry, Process Design and Development, Vol. 5, pp. 322–329, 1966.

    Article  Google Scholar 

  57. Kandlikar, S. S., An Improved Correlation for Predicting Two-Phase Flow Boiling Heat Transfer Coefficient in Horizontal and Vertical Tubes, in Heat Exchangers for Two-Phase Flow Applications, ASME, New York, pp. 3–10, 1983.

    Google Scholar 

  58. Reid, R. S., Pate, M. B., and Bergles, A. E., Evaporation of Refrigerant 113 Flow Inside Smooth Tubes, ASME Paper No. 87-HT-51, presented at National Heat Transfer Conference, Pittsburgh, August 1987.

    Google Scholar 

  59. Bergles, A. E., Burnout in Boiling Heat Transfer, Part II: High Quality Forced-Convection Systems, Nuclear Safety, Vol. 20, pp. 671–689, 1979.

    Google Scholar 

  60. Bowring, R. W., A Simple but Accurate Round Tube Uniform Heat Flux, Dryout Correlation Over the Pressure Range 0.7–17 MN/m2 (100–2500 psia), Atomic Energy Establishment Report AEEW-R-789, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bergles, A.E. (1988). Fundamentals of Boiling and Evaporation. In: Kakaç, S., Bergles, A.E., Fernandes, E.O. (eds) Two-Phase Flow Heat Exchangers. NATO ASI Series, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2790-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2790-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7755-2

  • Online ISBN: 978-94-009-2790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics