Skip to main content

Gas-Solid Heat Exchangers

  • Chapter
Two-Phase Flow Heat Exchangers

Part of the book series: NATO ASI Series ((NSSE,volume 143))

Abstract

Gas-Solid particle heat exchanging is usually realized by direct contacting in a suitable medium such as packed, fluidized or spouted bed. It is also possible to utilize especially fluidized beds as an indirect contact type heat exchanger through the introduction of heat transfer pipe bundles. In the latter case heat exchange usually takes place between the bed and liquid flowing through the pipes. As the topic of this study is gas-solid heat exchange, indirect contact type heat exchanging application of fluidized beds are excluded. Thus solely direct contact heat exchanging between gas and solid particle medium will be the topic of this study. Due to strong mixing of particles and very large amounts of heat transfer surfaces achieved in fluidized beds, they offer high heat transfer rates. On the other hand packed beds offer similar advantages whereas spouted beds consisting of a central fluidized region and annular dense packing exposes a combination of the former two regimes. The common applications of the gas-solid heat exchangers are drying, adsorption, reactor engineering and quenching. Mainly two regimes namely packed bed and fluidized bed regimes will be considered for the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colburn, A.P., Heat Transfer and Pressure Drop in Empty, Baffled and Packed Tubes, I-Heat Transfer in Packed Tubes, Ind.Eng.Chem., vol.23, no.8, pp.910–913, 1931.

    Article  Google Scholar 

  2. Botterill, J.S.M., Fluid-Bed Heat Transfer, Academic Press, London, 1975.

    Google Scholar 

  3. Wakao, N. and Kaguei, S., Heat and Mass Transfer in Packed Beds,Gordon and Beach Science Publishers, New York, 1982.

    Google Scholar 

  4. Mc Henry, K.W. and Wilhelm, R.H., AICHE J., Vol.3, no.83, 1957.

    Google Scholar 

  5. Ranz, W.E., Friction and Transfer Coefficients for Single Particles and Packed Beds, Chem.Eng.Prog., Vol.48, no.5, pp.247–253, 1952.

    Google Scholar 

  6. Yagi, S. and Kunii, D., Studies in Effective Thermal Conductivities in Packed Beds, AICHE Journal, Vol.3, no.3, pp.378–381, 1957.

    Article  Google Scholar 

  7. Gunn, D.J. and De Souza, J.F.C., Chem.Eng.Sci., Vol.29, pp.1363, 1974

    Article  Google Scholar 

  8. Gunn, D.J., Int.J.Heat Mass Transfer, Vol.21, pp.467, 1978.

    Article  Google Scholar 

  9. Ginoux, J.J. and Joly, C., Influence of a local obstruction on Heat Transfer in Packed Beds, Von Karman Institute Rept. TN80, May 1972.

    Google Scholar 

  10. Harriott, P. and Barnstone, L.A., Heat Transfer in Fluidized Beds I&EC Research Results Service Rept. MS 66–299, October 1966.

    Google Scholar 

  11. Shah, R.K., Classification of Heat Exchangers, Proc.ASI on Heat Exchangers: Thermal-Hydraulic Fundamentals and Design, Istanbul, pp. 1–27, 1980.

    Google Scholar 

  12. Kays, W.M., London, A.L. and Johnson, D.W., Gas Turbine Plant Heat Exchangers, ASME Rept., 1951.

    Google Scholar 

  13. Hanway, J.E., Jr., The Use of Fluidized-Bed Technology in Pollution Control, AICHE Symp. Ser., Vol.67, no.116, pp.236–244, 1971.

    Google Scholar 

  14. Stephens, F.M., Jr., The Fluidized Bed Sulphate Roasting of Non-Ferrous Metals, Chem.Eng.Prog.Symp.Ser., Vol.49, no.9, pp.455–458, 1953.

    Google Scholar 

  15. Winkler, F. and Linckh, E., German Pat. no.494, 240, 1927.

    Google Scholar 

  16. Kato, K. and Wen, C.Y., Gas-Particle Heat Transfer in Fixed and Fluidized Beds, Chem.Eng.Prog.Symp.Ser., Vol.66, no.105, pp.100–108, 1969.

    Google Scholar 

  17. Levenspiel, O. and Bischoff, K.B.,Advan.Chem.Eng., Vol.4, no.95, 1963.

    Google Scholar 

  18. Kunii, D., Levenspiel, O., Fluidization Engineering, Robert E.Krieger, New York, 1977.

    Google Scholar 

  19. Grace, J.R., An Evaluation of Models for Fluidized-Bed Reactors, AIChE Symp.Ser., Vol.67, no.11, pp.159–167, 1971.

    Google Scholar 

  20. Chen, P.J., Schneyer, G.P., Peterson, E.W., Blake, T.R., Cook, J.L., Brownell, D.W., Jr., Computer Modeling of Coal Gasification Reactors, DOE Rept. DOE/ET/10242-T1, April 1981.

    Google Scholar 

  21. Mickley, H.S. and Trilling, C.A., Heat Transfer Characteristics of Fluidized-Beds, Ind.Eng.Chem., Vol.41, no.6, pp.435–447, 1949.

    Article  Google Scholar 

  22. Leva, M., Heat Transfer to Gases Through Packed Tubes, Ind.Eng.Chem., Vol.39, no.7, pp.857–862, 1947.

    Article  Google Scholar 

  23. Irvine, J.R., Gutfinger, C. and Abuaf, N., Heat Transfer in Fluidized Beds, Advances in Heat Transfer, 1974.

    Google Scholar 

  24. Frantz, J.F., Chem.Eng.Prog., Vol.57, no.7, p.35, 1961.

    Google Scholar 

  25. Kothari, A.K., Analysis of Fluid-Solid Heat Transfer Coefficients in Fl. Beds M.S. Thesis, Illinois Institute of Technology, Chicago, 1967.

    Google Scholar 

  26. Gelperin, N.I. and Ainshtein, V.G., Fluidization, Chap.10, Academic Press, New York, 1971.

    Google Scholar 

  27. Zabrodsky, S.S., Hydrodynamics and Heat Transfer in Fluidized Beds, (Translation), M.I.T. Press, London, 1966.

    MATH  Google Scholar 

  28. Rowe, P.N., Gas-Solid Reaction in a fluidized bed, Chem.Eng.Prog., Vol.60, no.3, pp.75–80, 1964.

    Google Scholar 

  29. Mathur, E.P. and Epstein, N., Spouted Beds, Academic Press, New York, 1974.

    Google Scholar 

  30. Epstein, N. and Mathur, K.B., Applications of Spouted Beds, in Handbook of Multiphase Systems, ed.G. Hetsroni. Sect. 8.5.6., Hemisphere, London, 1982.

    Google Scholar 

  31. Kürsad, D. and Kilkiş, B., Numerical Analysis of Spouted-Bed Hydrodynamics, CJChE, Vol.61, no.3, pp.297–302, 1983.

    Google Scholar 

  32. Khoe, G.K., Mechanics of Spouted Beds, Ph.D. Thesis, Delft University, Delft, 1980.

    Google Scholar 

  33. Kunii, D., Suzuki, M., Int.J., Heat Mass Transfer, Vol.10, pp.845, 1967.

    Article  Google Scholar 

  34. Pandey, D.K., Upadhyay, S.N., Gupta, S.N. and Mishra, P., Particle-Fluid Heat Transfer in Fixed and Fluidized Beds, Scientific and Industrial Research, Vol.37, pp.224–249, 1978.

    Google Scholar 

  35. Littman, H. and Stone, A.P., Chem.Eng.Prog.Symp.Ser., Vol.62, no.62, pp.45, 1966.

    Google Scholar 

  36. Kunii, D. and Smith, J.M., Heat Transfer Characteristics of Porous Beds, AIChE Journal, Vol.6, no.1, pp.71–78, 1960.

    Article  Google Scholar 

  37. Park, M.R., Unsteady State Heat Transfer in Stationary Packed Beds, AIChE Journal, Vol.3, no.4, pp.513–516, 1957.

    Article  Google Scholar 

  38. Schumann, T.E.W., J. Franklin Inst., Vol.208, pp.405, 1929.

    Article  MATH  Google Scholar 

  39. Chechetkin, A.V., Some Problems in aerodynamics and heat transfer in reactors operating with suspended catalysts (in Russian), Trudy Moskovskii Knimiko-Tekhnologicheskii Inst. Im. Mendeleeva, no.20, 1955.

    Google Scholar 

  40. Kilkis, B., A Two Dimensional F.E.Analysis of Hydrodynamical Behaviour of Fluidized Beds, Proc.First Int.Conf.on Num.Met.in Thermal Problems, Swansea, pp.840–849, 1979.

    Google Scholar 

  41. Eltez, M., Finite Element Approach for the Analysis of the Hydro-dynamical Behaviour of Fluidized-Beds, M.Sc. Thesis, Middle East Technical University, Ankara, 1976.

    Google Scholar 

  42. Zabrodsky, S.S., Int.J.Heat Mass Transfer, Vol.6, no.23, 1963.

    Google Scholar 

  43. Gutfinger, C. and Abuaf, N., Heat Transfer in Fluidized Beds, Advances in Heat Transfer, ed S. Hartnett, J.P. and Irvine, T.Jr., Vol.10, Academic Press, London, 1974.

    Google Scholar 

  44. Mann, R.S. and Feng, L.C.L., Gas-Solid Heat Transfer in Fluidized Beds, Ind.Eng.Chem.Proc.Design and Development, Vol.7, no.3, pp.327–335, 1968.

    Article  Google Scholar 

  45. Delvosalle, C. and Vanderschuren, J., Gas to Particle and Particle to Particle Heat Transfer in Fluidized Beds of Large Particles, Chem.Eng. Sci., Vol.40, no.5, pp.769–779, 1985.

    Article  Google Scholar 

  46. Walton, J.S., Olson, R.L. and Levenspiel, O., Gas Solid, Film Coefficients of Heat Transfer in Fluidized Coal Beds, Ind.Eng.Chem., Vol.44, pp.1474–1480, 1952.

    Article  Google Scholar 

  47. Gunn, D.J., Narayanan, P.V., Particle-Fluid Heat Transfer and Dispersion in Fluidized Beds, Chem.Eng.Sci. Vol.36, no.12, pp.1985–1995, 1981.

    Article  Google Scholar 

  48. Rowe, P.N. and Claxton, K.T., Heat and Mass Transfer From a Single Sphere to Fluid Through An Array, Trans.Inst.Chem.Eng., Vol.43, p. 32, 1964.

    Google Scholar 

  49. Littman, H., Sliva, D.E., Gas Particle Heat Transfer Coefficient in Packed Beds at Low Reynolds Number Proc. Heat Transfer 1970 Paris-Versailles, Amsterdam, Elsevier, Vol.7, CT.1.4, 1971.

    Google Scholar 

  50. Uemaki, O. and Kugo, M., Heat Transfer in Spouted Beds,Kagaku, Kagaku, Vol.31, p.348, 1967.

    Google Scholar 

  51. Theunissen, P.H. and Buchlin, J.M., A two dimensional model for boiling in an Active Particle Bed, Von Karman Institute Rept. TN 153, October 1984.

    Google Scholar 

  52. Indyk, B., Blast Furnace with a Difference-A New Approach to the Thermal Models of Packed Beds-Part I, Num.Methods in Thermal Problems, Proc. Second Int.Conf,,Venice, Vol.2, pp.810–824, 1981.

    Google Scholar 

  53. Marsily, de G., Storage in the Ground, in Thermal Energy Storage, ed. Beghi, G., pp.145–176, D.Reidel Pub.Co., Dordrecht, 1981.

    Google Scholar 

  54. Wettermark, G., Thermal Energy Storage in Community Systems, in Thermal Energy Storage, ed. Beghi, G., pp.197–218, D.Reidel Pub.Co. Dordrecht, 1981.

    Google Scholar 

  55. Ree, H.Van der,Heat Pumps Combined with Thermal Storage, in Thermal Energy Storage, ed. Beghi, G., pp.387–415, D.Reidel Pub.Co. Dordrecht, 1981.

    Google Scholar 

  56. Wood, R.J., Thermal Energy Storage for the recovery of Industrial Waste Heat, in Thermal Energy Storage, ed. Beghi, G., pp.219–263, D. Reidel Pub.Co. Dordrecht, 1981.

    Google Scholar 

  57. Hoffman, H.W., et. al., Thermal Energy Storage for Industrial Waste Heat Recovery,in 14th. IECEC Conference, 789071, 1979.

    Google Scholar 

  58. Harakas, N.K. and Beatty, Jr., K.O., Moving bed Heat Transfer: I., Effect of Interstitial Gas with fine particles, Chem.Eng.Prog.Symp. Series, Vol.59, no.41, pp.122–128, 1963.

    Google Scholar 

  59. Keey, R.B., Drying Principles and Practice, pp.16–17, Pergamon Press, Oxford, 1981.

    Google Scholar 

  60. Vanecek, V., Markvart, M., Drbohlav, V.R. and Hummel, R.L., Experimental Evidence on Operation of Continuous Fluidized Bed Driers, Chem.Eng.Prog.Symp.Ser., Vol.66, no.105, pp.243–252, 1969.

    Google Scholar 

  61. Nazemi, A., Lancaster, E.B. and Wheelock T.D., Heat Transfer in Fluidized Beds of Flour and Starch, AIChE Symp.Series, Vol.67, no.116, pp.106–113, 1971.

    Google Scholar 

  62. Bachovin, D.M., Archer, D.H. and Neale, D.H., Heat Transfer in a Fluidized Bed Solar Thermal Receiver, AIChE Symp.Ser., Vol.79, no.222, pp.27–36, 1983.

    Google Scholar 

  63. Kilkis, B., Solar Energy Assisted Fluidized-Bed Dryer, Proc.Solar Energy Utilization:Fundamentals and Applications, NATO-ASI, Izmir, pp.616–631, 1986.

    Google Scholar 

  64. Kilkis, B., Theory and Practice on Solar Energy assisted Fluidized-Bed Corn Dryer, 5th Conf.on Thermogrammetry and Thermal Engineering, Budapest, 1987.

    Google Scholar 

  65. Keey, R.B., Drying Principles and Practice, pp.273–274, Pergamon Press, Oxford, 1981.

    Google Scholar 

  66. Mok, L.K., Graham, R.G., Lasade, H.I., Freel, B.A. and Bergougnou, M. A., Application of Ultra-Fast Fluidization to the fast pyrolysis of Cellelose (Ultrapyrolysis), AIChE Symp.Ser., Vol.80, no.234, 1984.

    Google Scholar 

  67. Kobayashi, M., Ramaswami, D. and Brazelton, W.T., Pulsed-Bed Approach to Fluidization, Chem.Eng.Prog., Vol.66, pp.47–57, 1970.

    Google Scholar 

  68. Zabrodsky, S.S. and Bokun, I.A., Pulsed-Bed Approach to Fluidization, Chem.Eng.Prog., Vol.66, pp.135–139, Trans. USAEC Rept, ANL-Trans.–613, 1968.

    Google Scholar 

  69. Jain, S.C. and Chen, B.H., Heat Transfer in a Screen-Packed fluidized Bed, AIChE Symp.Ser., Vol.67, no.116, pp.97–105, 1971.

    Google Scholar 

  70. Malek, M.A and Walsh, T.H., The treatment of coal for coking by the spouted bed process, Rep. no.FMP66/S4-SP. Dept. Mines and Tech. Surveys, Ottawa, 1966.

    Google Scholar 

  71. Németh, J., Pallai, E., Péter, M. and Törös, R., Heat Transfer in a novel type spouted bed, CJChE, Vol.61, no.3, pp.406, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kilkiş, B. (1988). Gas-Solid Heat Exchangers. In: Kakaç, S., Bergles, A.E., Fernandes, E.O. (eds) Two-Phase Flow Heat Exchangers. NATO ASI Series, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2790-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2790-2_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7755-2

  • Online ISBN: 978-94-009-2790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics