Skip to main content

Part of the book series: Mechanics of Elastic Stability ((MEST,volume 13))

Abstract

Thin-walled shells are very often subject to the loss of stability; moreover, postcritical behaviour of shells is, as a rule, unstable, and hence the stability condition as an optimization constraint should be formulated very carefully. Experimental investigations on stability of tubes under external pressure were initiated in the fifties of the XIX-th Century (W.Fairbairn [8.49], and a rough theoretical background was given within the next years (F. Grashof [8.70], J.A. Bresse [5.10]), but a more general theory was derived at the beginning of the XX-th Century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulkhakov, K.A., Cherevatsky, S.B., On optimal design of layered shells for stability (in Russian), Kazansky Khim. Tekhn. Inst., Kazan 1982 (doctoral thesis).

    Google Scholar 

  2. Adamovich, I.S. Rikards, R.B., Optimization of compressed cylindrical shells with elastic properties variable along the axis (in Russian), Mekh. Polimerov (1975), 5, 816–821.

    Google Scholar 

  3. Adamovich, I.S., Rikards, R.B., Mass optimization of shells of revolution with variable geometry and reinforcement structure (in Russian), Mekh. Polimerov (1977), 3, 494 – 502.

    Google Scholar 

  4. Agarwal, B.L., Sobel, L.H., Weight comparisons of optimized stiffened, unstiffened and sandwich cylindrical shells made from composite or aluminum materials, J. Aircraft 14 (1977), 1000 – 1008.

    Google Scholar 

  5. Alimzhanov, M.T., Kurykbayev, B., On evaluation of optimal (minimal) thickness of thin-walled structures under axial pressure (in Russian), Analit. i Chisl. Metody Resh. Zadach Mat. i Mekh., Alma-Ata 1984, 107 – 114.

    Google Scholar 

  6. Almroth, B.O., Design of composite material structures for buckling — an evaluation of the state-of-the-art, Tech. Rep. Air Force Wright Aero. Lab. TR - 81 – 3102, March 1981.

    Google Scholar 

  7. Almroth, B.O., Burns, A.B., Pittner, E.V., Design criteria for axially loaded cylindrical shells, J. Spacecraft and Rockets 7(1970), 714 – 720.

    ADS  Google Scholar 

  8. Almroth, B.O., Stern, P., Bushnell, D., Imperfection sensitivity of optimized structural panels, Air Force Wright Aero. Lab. TR - 80 – 3182, March 1981.

    Google Scholar 

  9. Ambartsumyan, S.A., Belubekyan, E.V., Gnuni, V., Optimal design of shells of revolution under external pressure using modern composite materials (in Russian), IVth Vses. Syezd po Teor, Prikl. Mekh., Kiev 1976, 7 – 8.

    Google Scholar 

  10. Amiro, I.Ya., Palchevsky, A.S., Optimization of stiffening of axially compressed cylindrical shells (in Russian), Prikl. Mekh. 11(1975), 11, 31 – 35.

    Google Scholar 

  11. Amiro, I. Ya., Palchevsky, A.S., Pryadko, A.A., Methodics of choice of parameters of a ribbed cylindrical shell under axial compression (in Russian), Stroit. Mekh. Rasch. Sooruzh. (1972), 4, 28 – 31.

    Google Scholar 

  12. Amosov, A.A., On the analysis of shallow shells of variable thickness and curvature (in Russian), Izv. AN SSSR, Mekh. Tv. Tela (1969), 6, 129 – 134.

    Google Scholar 

  13. Andreyev, L.V., Mossakovsky, V.I., Obodan, N.I., On optimal thickness of a cylindrical shell loaded by external pressure (in Russian), Prikl, Mat. Mekh. 36(1972), 4, 717 – 725.

    Google Scholar 

  14. Andriyenko, V.M., Yeruzalimsky, K.M., Calculation of strength, stability and optimal parameters of three-layer cylindrical panels of composite materials (in Russian), Mekh. Konstr. iz Kompoz. Mat., Novosibirsk 1984, 118 – 123.

    Google Scholar 

  15. Aswani, M., Optimization of stiffened cylinder subject to destabilizing load, Proc. Advances in Civil Engng. Through Engng Mech., ASCE, New York 1977, 456 – 459.

    Google Scholar 

  16. Axelrad, E.L., On local buckling of thin shells, Int. J. Non-Linear Mech. 20(1985), 4, 249 – 259.

    ADS  MATH  Google Scholar 

  17. Beiner, L., Librescu, L., On the weight minimization of supersonic, axisymmetric circular cylindrical shells of finite length, Rev. Roum. Sci. Techn., Sér. Méc. Appl. 18(1973), 2, 395 – 414.

    MATH  Google Scholar 

  18. Bielski, J., Postcritical deformations of meridional cross-section of elastic toroidal shells subject to external pressure, Proc. Euromech Coll. 197. Jablonna 1985, Springer 1986.

    Google Scholar 

  19. Block, D.L., Minimum weight design of axially compressed ring and stringer stiffened cylindrical shells, AIAA Paper 147, 1971; NASA CR-1766, July 1971.

    Google Scholar 

  20. Bochkovsky, V.S., Goroshko, O.A., On the choice of stiffening of fibreglass shells (in Russian), Ustoych. i Deform. Elem. Konstr. iz Kompozits. Mat., Naukova Dumka, Kiev 1972, 68 – 75.

    Google Scholar 

  21. Brazier, L., On the flexure of thin cylindrical shells and other thin sections, Proc. Roy. Soc. London A116(1927), A773, 104 – 114.

    ADS  Google Scholar 

  22. Brinkmann, G., Die optimierte flache Schale: Formfindung, Tragverhalten und Stabilität, Ing.-Archiv 47(1978), 4, 197 – 206.

    MATH  Google Scholar 

  23. Brinkmann, G., Die optimierte Schale: Formfindung und Stabilität, Z. angew. Math. Mechanik 58(1978), 6, T98–T99.

    Google Scholar 

  24. Bronowicki, A.J., Nelson, R.B., Felton, L.P., Schmit, L.A. Jr., Optimization of ring stiffened cylindrical shells, AIAA Journal 13(1975), 10, 1319 – 1325.

    ADS  Google Scholar 

  25. Burns, A.B., Minimum-weight analysis for honeycomb sandwich plates and shells, Lockheed Miss. Space Co., Sunnyvale 1964, TR 2 – 60 – 64 – 31.

    Google Scholar 

  26. Burns, A.B., Minimum weight of hydrostatically compressed ring — stiffened cones, J. Spacecraft and Rockets 3(1966), 3, 387 – 392.

    ADS  Google Scholar 

  27. Burns, A.B., Optimum axially compressed, foam-core sandwich cylinders, J. Spacecraft and Rockets 3(1966), 10, 1557 – 1559.

    ADS  Google Scholar 

  28. Burns, A.B., Structural optimization of axially compressed cylinders considering ring-stringer eccentricity effects, J. Spacecraft and Rockets 3(1966), 8, 1263 – 1268.

    ADS  Google Scholar 

  29. Burns, A.B., Optimum cylinders with contrasting materials and various ring/stringer configurations, J. Spacecraft and Rockets 4(1967), 3, 375 – 385.

    MathSciNet  ADS  Google Scholar 

  30. Burns, A.B., Optimum stiffened cylinders for combined axial compression and internal or external pressure, J. Spacecraft and Rockets 5(1968), 6, 690 – 699.

    ADS  Google Scholar 

  31. Burns, A.B., Almroth, B.O., Structural optimization of axially compressed, ring-stringer stiffened cylinders, J. Spacecraft and Rockets 3(1966), 1,19 – 25.

    ADS  Google Scholar 

  32. Bushnell, D., Panda — Interactive program for minimum-weight design of stiffened cylindrical panels and shells, Computers and Structures 16(1983), 1/4, 167 – 185.

    MATH  Google Scholar 

  33. Byskov, E., Hutchinson, J.W., Mode interaction in axially stiffened cylindrical shells, AIAA Journal 15(1977), 7, 941 – 948.

    ADS  Google Scholar 

  34. Cohen, G.A., Optimum design of truss-core sandwich cylinders under axial compression, AIAA Journal 1(1963), 7, 1626 – 1630.

    MATH  Google Scholar 

  35. Cohen, G.A., Structural optimization of sandwich and ring — stiffened 120 degree conical shells subjected to external pressure, NASA CR-1424, Washington 1969.

    Google Scholar 

  36. Cox, H.L., Grayley, M.E., The influence of production imperfections on design of optimum structures, Contrib. Theory Aircr. Struct., Delft 1972, 261 – 271.

    Google Scholar 

  37. Crawford, R.F., Schwartz, B., General instability and optimum design of grid-stiffened spherical domes, AIAA Journal 3(1965), 3, 511 – 515.

    MATH  Google Scholar 

  38. Cvetkov, C., Determination of most convenient shapes of stiffeners of cylindrical shells (in Bulgarian), Tekhn. Mysl 3(1966), 4, 73 – 76.

    Google Scholar 

  39. Cvetkov, C., Optimal depth of stiffeners, elastically clamped to shells with small deformations (in Bulgarian), Stroitelstvo 23(1976), 7/8,8 – 11.

    Google Scholar 

  40. Dickson, J.N., Biggers, S.B., Wang, J.T.S., A preliminary design procedure for composite panels with open-section stiffeners loaded in the post-buckling range, Adv. in Compos. Mat. 1, Pergamon Press 1980, 812 – 825.

    Google Scholar 

  41. Domansky, P.P., Optimization of solutions to motion equations for shells or revolution as to increase the parameters of dynamic stability (in Russian), Dokl. AN SSSR, A(1982), 12, 12 – 14.

    Google Scholar 

  42. Donnell, L.H., A new theory for the buckling of thin cylinders under axial compression and bending, Trans. ASME 56(1934), 795 – 806.

    Google Scholar 

  43. Donnell, L.H., Wan, C.C., Effect of imperfections on buckling of thin cylinders and columns under axial compression, J. Appl. Mech. 17(1950), 1,73 – 83.

    MATH  Google Scholar 

  44. Dow, N.F., Rosen, B.W., Structural efficiency of orthotopic cylindrical shells subjected to axial compression, AIAA Journal 4(1966), 3,481 – 485.

    Google Scholar 

  45. Dyakonov, V.B., On weight efficiency of longitudinally goffered shells under axial compression (in Russian), Stroit. Mekh. Rasch.Sooruzh. (1971), 3, 34 – 37.

    Google Scholar 

  46. Eggert, H., Ein Beitrag zum Problem der Mindeststeifigkeit bei Schalen, Stahlbau 34(1965), 12, 353 – 358.

    Google Scholar 

  47. Elatontseva, I.V., Korolkov, O.N., Evaluation of optimal parameters of three-layer shells under compression and their weight efficiency analysis (in Russian), Avtom. Proektir. Aviats. Konstr., Kuybyshev 1979, 132 – 139.

    Google Scholar 

  48. Ermolov, S.B., Potapov, Yu.N., Optimal parameters of three-layer shells (in Russian), Stroit. Mekh. Rasch. Sooruzh. (1968), 2, 7 – 9.

    Google Scholar 

  49. Fairbairn, W., On the resistance of tubes to collapse, Phil. Trans. Roy. Soc. London 148(1858), 389 – 414.

    Google Scholar 

  50. Farkas, J., Optimalbemessung von Kranträgern mit ausgesteiftem Schalenquerschnitt, Wiss. Z. Techn. Hochsch. Magdeburg 17(1973), 6, 715 – 719.

    Google Scholar 

  51. Federhofer, K., Stabilität der Kreiszylinderschale mit veränderlicher Wandstärke, Österr. Ing.-Archiv 6(1952), 277.

    MathSciNet  MATH  Google Scholar 

  52. Flügge, W., Die Stabilitat der Kreiszylinderschale, Ing.-Archiv 3(1932), 5, 463 – 506.

    MATH  Google Scholar 

  53. Gallagher, R.H., Rattinger, I., Krivetsky, A., Minimum weight shells in bending, Aerospace Engng. 21(1962), 2, pp. 58, 59, 64, 68, 72.

    Google Scholar 

  54. Gerard, G., Minimum weight design of ring stiffened cylinders under external pressure, J. Ship Res. 5(1961), 2, 44 – 49.

    MathSciNet  Google Scholar 

  55. Gerasimov, B. Ya., Optimization problems on an example of stiffened cylindrical shells (in Russian), Mekhan. i Avtom. Upravl. (1983), 2, 37 – 70.

    Google Scholar 

  56. Gerasimov, E.N., Multicriterial optimization of wafer shells (in Russian), Issled., Raschet i Ispyt. Metal. Konstr., Kazan 1980, 33–35.

    Google Scholar 

  57. Ginzburg, I.N., Kan, S.N., On a certain method of choice of optimal parameters of a thin-walled structure (in Russian), Trudy VII Vsesoy. Konf. po Teorii Obolochek i Plastinok, Dnepropetrovsk 1969, Nauka, Moskva 1970, 181 – 185.

    Google Scholar 

  58. Ginzburg, I.N., Kan, S.N., Choice of optimal parameters of eccentrically stringer-stiffened cylindrical shells under axial compression (in Russian), Teoria Plastin i Obolochek, Nauka, Moskva 1971, 55 – 59.

    Google Scholar 

  59. Ginzburg, I.N., Kantor, B.Ya., Weight optimization of stiffened cylindrical shells under axial compression (in Russian), Izv. Vyssh. Uch. Zaved., Avyats. Tekhn. (1974), 1, 51 – 54.

    Google Scholar 

  60. Ginzburg, I.N., Kantor, B.Ya., Khodova, A.E., Weight optimization of three-layer cylindrical shells (in Russian), Izv. Vyssh. Uch. Zaved., Avyats. Tekhn. (1974), 2, 48 – 51.

    Google Scholar 

  61. Ginzburg, I.N., Kantor, B.Ya., Khodova, A.E., Sheludko, G.A., Optimal parameters of axially compressed three-layer cylindrical shells with symmetric structure (in Russian), Dinamika i Prochnost Mashin 18(1973), 99 – 104.

    Google Scholar 

  62. Ginzburg, I.N., Kantor, B.Ya., Rekuta, L.F., Choice of optimal parameters of axially compressed stiffened shells (in Russian), Dinamika i Prochnost Mashin 19(1974), 20 – 26.

    Google Scholar 

  63. Ginzburg, I.N., Kantor, B.Ya., Sheludko, G.A., Stiffened cylindrical shells of minimal weight under axial compression (in Russian), Trudy IX Vsesoy. Konf. po Teorii Obolochek i Plastin, Leningrad 1973, Sudostroyenie 1975, 254 – 256.

    Google Scholar 

  64. Ginzburg, I.N., Lipovsky, D.E., Nazarov, V.A., Weight optimization of cylindrical shells allowing for biaxial stress in stiffening ribs (in Russian), Trudy X Vsesoy. Konf. po Teorii Obolochek i Plastin, Kutaisi 1975, 542 – 549.

    Google Scholar 

  65. Gnuni, V.C., Kazaryan, R.S., On a certain optimal problem of dynamic stability of layered orthotopic cylindrical shell partly filled with liquid (in Russian), Trudy X Vsesoy. Konf. po Teorii Obolochek i Plastin, Kutaisi 1975, 550 – 557.

    Google Scholar 

  66. Godes, Ya.Yu., Pochtman, Yu.M., On the choice of optimal parameters of a cylindrical fibreglass shell under axial compression (in Russian), Mekh. Polimerov (1972), 5, 945 – 946.

    Google Scholar 

  67. Gorbatov, A.S., Mass minimization of nonuniformly stiffened along the axis cylindrical shells under external pressure (in Russian), Dnepropetr. Inzh.-Stroit. Inst. 1984, 14 pp.

    Google Scholar 

  68. Goroshko, O.O., Babich, D.B., Koshevoy, I.K., On the choice of optimal parameters of spherical three-layer shells (in Ukrainian), Visnik Kievsk. Univ., Mash., Mekh. 20(1978), 145 – 149.

    Google Scholar 

  69. Grachev, O.A., Minimal weight analysis of ribbed spherical shells under external pressure (in Russian), Prostr. Konstr. v Krasnoyarskim Kraye, Krasnoyarsk 1983, 116 – 122.

    Google Scholar 

  70. Grashof, F., W. Fairbairns Versuche über den Widerstand von Röhren gegen Zusammendrückung, VDI-Zeitschrift 3(1859), 8/9, 234 – 243.

    Google Scholar 

  71. Grishchak, V.Z., Kostyuchenko, I.N., On the choice of optimal ply angle for glass reinforcement of cylindrical shells under torsion (in Russian), Gidroaeromekhanika i Teoria Uprugosti 19(1975), 123 – 133.

    Google Scholar 

  72. Harding, J.E., Ring-stiffened cylinders under axial and external pressure loading, Proc. Inst. Civ. Eng. 71(1981), Sept., 863 – 878.

    Google Scholar 

  73. Hayashi, T., Optimization for elastic buckling strength of fiber-reinforced composite structures – columns, plates and cylinders, Proc. Mech. Behavior of Materials, Soc. Mat. Sci. Japan, August 1974, 399 – 405.

    Google Scholar 

  74. Hedgepeth, J.M., Design of stiffened cylinders in axial compression, NASA Techn. Note D-1510, 1962, 77 – 83.

    Google Scholar 

  75. Hirano, Y., Optimization of laminated composite cylindrical shells for axial buckling, Trans. Jap. Soc. Aero, and Space Sci. 26(1983), 73, 154 – 162.

    Google Scholar 

  76. Hui, D., Mode interaction of axially stiffened cylindrical shells, effects of stringer eccentricity and axial stiffness, Univ. of Toronto, Inst. Aerospace St. Rept. 247, 1980.

    Google Scholar 

  77. Hyman, B.I., Lucas, A.W.Jr., An optimum design for the instability of cylindrical shells under lateral pressure, AIAA Journal 9(1971), 4, 738 – 740.

    ADS  Google Scholar 

  78. Ignatyuk, V.I., On evaluation of optimal stiffening parameters of cylindrical shells under axial compression quickly increasing in time (in Russian), Prikl. Mekh. 18(1982), 10, 123 – 126.

    Google Scholar 

  79. Jones, R.I., Hague, D.S., Application of multi-variable search technique to structural design optimization, NASA CR-2038, Jan. 1972.

    Google Scholar 

  80. Joyce, N.B., Mitchell, L.H., Panel shape for least weight design of stiffened cylinders in pure bending, Council for Sci. Ind. Research (Australia), Div. Aeronautics, Rep. SM 106, Dec. 1947.

    Google Scholar 

  81. Kabanov, V.V., Zheleznov, L.P., Butyrin, V.I., Optimization of stiffened shells under nonaxisymmetric loading (in Russian), Izv. VUZov, Mashinostr. 9(1984), 21 – 24.

    Google Scholar 

  82. Kamenskikh, A.S., Baranov, M.B., Smirnov-Vasilev, K.G., Khalimovich, V.I., Optimization of a compressed cylindrical shell made of composite polymeric material allowing for its reliability (in Russian), Prostr. Konstr. v Krasnoyarskim Kraye, 12(1979), 114 – 118.

    Google Scholar 

  83. Kantor, B. Ya., Khodova, A.E., Sheludko, G.A., On the analysis of optimal three-layer cylindrical shells with nonsymmetric structure (in Russian), Raschet Prostr. Sistem v Stroit. Mekh., Saratov 1972, 76 – 78.

    Google Scholar 

  84. Karman, T., Tsien, H.S., The buckling of thin cylindrical shells under axial compression, J. Aero. Sci. 8(1941), 8, 303 – 312.

    Google Scholar 

  85. Kavalerchik, B. Ya., Optimal design of three-layer shells (in Russian), Izv. AN SSSR, Mekh. Tverd. Tela (1973), 3, 167 – 169.

    Google Scholar 

  86. Kavalerchik, B.Ya., Kozhevnikov, A.A., Kuznetsov, B.E., Optimal design of stiffened spherical shells (in Russian), Prikl. Mekh. 9(1973), 10, 119 – 124.

    Google Scholar 

  87. Khot, N.S., Computer program (OPTCOMP) for optimization of composite structures for minimum weight design, AFFDL -TR — 76 – 149 (1977).

    Google Scholar 

  88. Richer, T.P., Structural synthesis of integrally stiffened cylinders, J. Spacecraft and Rockets 5(1968), 1, 62 – 67.

    ADS  Google Scholar 

  89. Richer, T.P., Chao, T.L., Minimum weight design of stiffened fiber composite cylinders, AIAA/ASME 11th Str., Str.Dyn. and Mat. Conf., Denver 1970, 129 – 145

    Google Scholar 

  90. Kleshchev, S.I., On optimal design of thin-walled cylindrical shells with stiffening ribs (in Russian), Vestn. Mashinostr. (1969), 2, 39 – 40.

    Google Scholar 

  91. Koiter, W.T., On the nonlinear theory of thin elastic shells, Proc. Kon. Ned. Ak. Wet. B69(1966), 1 – 54

    MathSciNet  Google Scholar 

  92. Koiter, W.T., General equations of elastic stability for thin shells, Proc. Symp. on the Theory of Shells, Houston 1967, 185 – 227.

    Google Scholar 

  93. Koiter, W.T., General theory of mode interaction in stiffened plate and shell structures, Lab. of Engng. Mechanics, Rept. 590, Delft 1976.

    Google Scholar 

  94. Kokkinowrachos, K., Die Auslegung der Kugelschale als Druckkörper mit Hilfe von Zuverlässigkeitsverfahren, Mt. 3(1972), 4, 151 – 156.

    Google Scholar 

  95. Kolodyazhnyi, A.P., Choice of rational parameters of stringer stiffened shell loaded by bending moment and axial force (in Russian), Reshenye Niekotorykh Fiziko — tekhn. Zadach, Dnepropetrovsk 1972, 44 – 48.

    Google Scholar 

  96. Kolodyazhnyi, A.P., Analysis of optimal parameters of stringer stiffened shell (in Russian), Teor. i Eksper. Issled. Prochnosti, Ustoych. i Din. Konstr., Dnepropetrovsk 1973, 52 – 59.

    Google Scholar 

  97. Komisarova, G.L., Longitudinally goffered cylindrical shells of optimal profile (in Ukrainian), Prikl. Mekh. 9(1963), 5, 473 – 479.

    Google Scholar 

  98. Kornev, V.M., Optimization providing structure stability in connection with the density of eigenvalues, Proc. Euromech Coll. 112 “Bracketing Eigenfreq. Contin.” Matrafüred 1979, Budapest 1980, 261 – 271.

    Google Scholar 

  99. Korolev, V.I., Fibreglass cylindrical shell of maximal stability under external pressure (in Russian), Nekot. Zadachi po Rasch. Plastin i Obol. iz Stekloplastika, Dom Tekhniki, Moskva 1962, 63 – 93.

    Google Scholar 

  100. Korolev, V.I., Some problems of optimal choice of fibreglass structure (in Russian), Inzh. Zhurnal 5(1965), 2, 306 – 315.

    Google Scholar 

  101. Korolev, V.I., Layered anisotropic plates and shells made of reinforced plastics (in Russian), Mashinostroyenie, Moskva 1965

    Google Scholar 

  102. Kosichenko, A.A., Pochtman, Yu.M., Rikards, R.B., Minimum mass design of composite cylindrical shells in supersonic gas flow (in Russian), Izv. VUZov, Avyats. Tekhn. 23(1980), 2, 62 – 66.

    Google Scholar 

  103. Kosichenko, A.A., Pochtman, Yu.M., Rikards, R.B., Optimal design of multilayer nonsymmetric composite cylindrical shell in supersonic gas flow (in Russian), Mekh. Deformiruyemykh Sred 7, Saratov 1982, 87 – 94.

    Google Scholar 

  104. Kruzelecki, J., Optimization of shells under combined loadings via the concept of uniform stability, Optimization of Distributed Parameter Structures, in [0.60], Vol. II, 929 – 950.

    Google Scholar 

  105. Kruzelecki, J., Optymalne ksztaltowanie powlok walcowych pod dzialaniem momentu zginajacego i sily osiowej, Rozpr. Inz. 33(1985), 1/2, 135 – 149.

    MATH  Google Scholar 

  106. Kruzelecki, J., Zyczkowski, M., Optymalne ksztaltowanie powlok cylindrycznych pod dzialaniem obciazen zlozonych w oparciu o koncepcje rownomiernej statecznosci, in [0.71], 339 – 358.

    Google Scholar 

  107. Kunoo, K., Yang, T.Y., Minimum weight design of an orthogonally stiffened waffle cylindrical shell with buckling constraints. J. Spacecraft and Rockets 13(1976), 3, 137 – 143.

    ADS  Google Scholar 

  108. Kunoo, K., Yang, T.Y., Minimum weight design of cylindrical shell with multiple stiffener sizes, AIAA Journal 16(1978), 1, 35 – 40.

    ADS  MATH  Google Scholar 

  109. Lakshmikantham, C., Becker, H., Minimum weight aspects of stiffened cylinders under compression, NASA TR-CR-81693, Washington 1967.

    Google Scholar 

  110. Lakshmikantham, C., Gerard, G., Minimum weight design of stiffened cylinders, Aero. Quart. 21(1970), 2, 49 – 68.

    Google Scholar 

  111. Linnik, A.K., Cvetkov, M.M., Choice of rational stiffening of ribbed shells (in Russian), Gidroaeromekh. i Teoria Uprug. 23(1978), 135 – 142.

    Google Scholar 

  112. Lipin, E.K., Optimal design of stiffened panels under combined loading (in Russian), Uch. Zap. Centr. Aero-Gidrodin. Inst. 9(1978), 1, 71 – 77.

    Google Scholar 

  113. Lipovsky, D.E., Nazarov, V.A., On optimization of stiffened cylindrical shells from the viewpoint of stability in axial compression (in Russian), Izv. VUZov, Mashinostr. 7(1984), 23 – 26.

    Google Scholar 

  114. Lorenz, R., Achsensymmetrische Verzerrungen in dünnwandigen Hohlzylindern, VDI — Zeitschrift 52(1908), 43, 1706 – 1713.

    Google Scholar 

  115. Lorenz, R., Die nicht achsensymmetrische Knickung dünnwandiger Hohlzylinder, Phys. Zeitschr. 12(1911), 7, 241 – 260.

    Google Scholar 

  116. Lukoshevichius, R.S., Rikards, R.B., Teters, G.A., Weight minimization of reinforced cylindrical shells with elastic core for strength and stability in axial compression (in Russian), Lit. Mekh. Sbornik 16(1976), 1, 81–90.

    Google Scholar 

  117. Lukoshevichius, R.S., Rikards, R.B., Teters, G.A., Mass minimization of composite cylindrical shells with elastic core for strength and stability under combined loading (in Russian), Mekh. Polimerov (1976), 2, 289 – 297.

    Google Scholar 

  118. Lukoshevichius, R.S., Rikards, R.B., Teters, G.A., Probabilistic analysis of stability and mass minimization of composite cylindrical shells with random imperfections (in Russian), Mekh. Polimerov (1977), 1, 80 – 89.

    Google Scholar 

  119. Lukoshevichius, R.S., Rikards, R.B., Teters, G.A., Mass minimization of cylindrical shells with elastic core in axial compression and external pressure allowing for random characteristics of composite material (in Russian), Mekh. Polimerov (1977), 6, 1039 – 1043.

    Google Scholar 

  120. Lukoshevichius, R.S., Rikards, R.B., Teters, G.A., Tsypinas, I.K., Synthesis of optimal cylindrical shells made of reinforced plastics with elastic core designed for stability (in Russian), Mekh. Polimerov (1975), 2, 285 – 293.

    Google Scholar 

  121. Lukasiewicz, S., The equations of the technical theory of shells of variable rigidity, Arch. Mech. Stos. 13(1961), 1, 107 – 116.

    MathSciNet  MATH  Google Scholar 

  122. Magnucki, K., Dobor optymalnej sztywnosci sandwiczowej powloki stozkowej z uwzglednieniem statecznosci, Arch. Bud. Maszyn 30(1983), 1/2, 21 – 32.

    Google Scholar 

  123. Majumder, D.K., Thornton, W.A., Design of efficient stiffened shells of revolution, Int. J. Numer. Meth. Eng. 10(1976), 3, 535 – 549.

    MATH  Google Scholar 

  124. Malkov, V.P., Morozov, V.D., Weight optimization of ribbed cylindrical shells (in Russian), Prikl. Probl. Prochnosti i Plast. 4(1976), Gorky, 71 – 79.

    Google Scholar 

  125. Manevich, A.I., Optimal design of a stiffened cylindrical shell under uniform external pressure (in Ukrainian), Dopovidi AN URSR (1963), 7, 875 – 878.

    Google Scholar 

  126. Manevich, A.I., Optimization of uniformly stiffened cylindrical shells in axial compression (in Russian), Teoria Plastin i Obol., Nauka, Moskva 1971, 178 – 184.

    Google Scholar 

  127. Manevich, A.I., Kaganov, N.E., Stability and weight optimization of stiffened spherical shells under external pressure (in Russian), Prikl. Mekh. 9(1973), 1, 20 – 25.

    Google Scholar 

  128. Manevich, A.I., Zaydenberg, A.M., On weight optimization of structurally orthotropic cylindrical shells (in Russian), Trudy IX Vsesoy, Konf. po Teorii Obolochek i Plastin, Leningrad 1973, Sudostroyenie 1975, 283 – 285.

    Google Scholar 

  129. Marguerre, K., Zur Theorie der gekrümmten Platte grosser Formänderung, Proc. 5th Int. Congr. Appl. Mech., Wiley, New York 1938, 93 – 101.

    Google Scholar 

  130. Medvedev, N.G., Some spectral singularities of optimal problems of stability of variable thickness shells (in Russian), Dok. AN USSR, Ser. A, (1980), 9, 59 – 63.

    Google Scholar 

  131. Medvedev, N.G., Optimal control in the problems of stress state, stability and vibrations of orthotopic shells of variable thickness (in Russian), Vopr. Optimaln. Proektir. Plastin i Obolochek, Saratov 1981, 48 – 50.

    Google Scholar 

  132. Medvedev, N.G., Totsky, N.P., On multiplicity of eigenvalue spectrum in optimal problems of stability of variable thickness cylindrical shells (in Russian), Prikl. Mekh. 20(1984) 6, 113 – 116.

    Google Scholar 

  133. Micks, W.R., Minimum weight of stiffened cylindrical shells in pure bending, J. Aero. Sci. 17(1950), 4, 211–216.

    Google Scholar 

  134. Mikisheva, V.I., Optimal reinforcement of fibreglass shells for stability under external pressure or axial compression (in Russian), Mekh. Polimerov (1968), 5, 864–875.

    Google Scholar 

  135. Mises, R., Der kritische Aussendruck zylindrischer Rohre, VDI-Zeitschrift 58(1914), 19, 750–755.

    Google Scholar 

  136. Mitchell, L.H., Minimum weight semi-monocoque cylinders subjected to pure bending, Council for Sci. Ind. Research (Australia), Div. Aeronautics, Rep. SM 118, Sept 1948.

    Google Scholar 

  137. Mitkevich, A.B., Protasov, V.D., Optimization of reinforced cylindrical shells of uniform strength under pressure with respect to stability in axial compression (in Russian), Mekh. Polimerov (1973), 6, 1123–1126.

    Google Scholar 

  138. Morrow, W.M., Schmit, L.A. Jr., Structural synthesis of a stiffened cylinder, NASA CR-1217, Dec. 1968.

    Google Scholar 

  139. Mossakovsky, V.I., Pochtman, Yu.M., Minimum weight analysis of ring stiffened cylindrical shells under external pressure by using random search method (in Ukrainian), Dopovidi AN URSR, Ser. A (1972), 5,457–460.

    Google Scholar 

  140. Mushtari, Kh.M., Some generalizations of thin shells theory with applications to elastic stability problems (in Russian), Prikl. Mat. Mekh., Novaya Seria 2(1939), 4, 439–456.

    Google Scholar 

  141. Mushtari, Kh.M., On elastic equilibrium of a thin shell with initial imperfections in middle surface (in Russian), Prikl. Mat. Mekh. 15(1951), 6, 743–750.

    Google Scholar 

  142. Narusberg, V.L., Optimization of a composite cylindrical shell with visco-elastic core, subject to creep buckling (in Russian), Mekh. Polimerov (1977), 4, 679–684.

    Google Scholar 

  143. Narusberg, V.L., Optimization of reinforced plastic cylindrical shell with core under dynamic loading (in Russian), Mekh. Polimerov (1977), 5, 879–885.

    Google Scholar 

  144. Narusberg, V.L., On justification of a homogeneous model of a layered composite in the problems of shell optimization under stability constraints (in Russian), Mekh. Kompozitnykh Mat. 17(1981), 3, 474–479.

    Google Scholar 

  145. Narusberg, V.L., On structural equations of rationally reinforced layered shells subject to loss of stability (in Russian), Trudy 4 Simp. po Mekh. Konstr. iz Kompoz. Mat., Novosibirsk 1984, 186–189.

    Google Scholar 

  146. Narusberg, V.L., Rikards, R.B., Teters, G.A., On a certain problem of synthesis of a multilayer shell of minimal weight (in Russian), Trudy X Vsesoy. Konf. po Teorii Obol. Plastin, Kutaisi 1975, 622–633.

    Google Scholar 

  147. Narusberg, V.L., Rikards, R.B., Teters, G.A., Optimization of reinforced transversally nonhomogeneous cylindrical shells, (in Russian), Mekh. Polimerov (1976), 2, 298–303.

    Google Scholar 

  148. Narusberg, V.L., Rikards, R.B., Teters, G.A., Optimization of a reinforced plastic shell with geometrical nonlinear factors taken into account (in Russian), Mekh. Polimerov (1978), 6, 1079–1083.

    Google Scholar 

  149. Narusberg, V.L. Upitis, Z.T., On optimization of composite shells under stability and strength constraints (in Russian), Probl. Prochnosti 12(1980), 5, 109–111.

    Google Scholar 

  150. Nekrutman, A.B., Optimal design of momentless shells of revolution with stability factor taken into account (in Russian), Trudy Centr. Nauch.-Issl. Inst. Stroit. Konstr. 19(1971), 99–107.

    Google Scholar 

  151. Nemirovsky, Yu.V., Samsonov, V.I., Cylindrical reinforced shells of maximal stability under unifrom external pressure (in Russian), Mekh. Polimerov (1974), 1, 75–83.

    Google Scholar 

  152. Nemirovsky, Yu.V., Samsonov, V.I., On rational reinforcement of cylindrical shells under axial compression (in Russian), Izv. AN SSSR, Mekh. Tverd. Tela (1974), 1, 103–112.

    Google Scholar 

  153. Nemirovsky, Yu. V., Samsonov, V.I., On rational reinforcement of cylindrical shells subject to loss of stability under twisting moments (in Russian), Prikl. Mekh. 10(1974), 5, 63–71.

    Google Scholar 

  154. Nemirovsky, Yu.V., Samsonov, V.I., Optimization method for reinforced layered and stiffened cylindrical shells with respect to vibrations and stability (in Russian), Chisl. Met. Resh. Zadach Teorii Uprug. i Plast., Novosibirsk 1982, 89–96.

    Google Scholar 

  155. Nilov, A.A., Design and evaluation of rational parameters of stiffening of steel cylindrical shells with respect to stability (in Russian), Metal, i Plastmass. Konstruktsyi, Kiev 1973, 88–99.

    Google Scholar 

  156. Nshanian, Y.S., Pappas, M., Optimal laminated composite shells for buckling and vibration, AIAA Journal 21(1983), 3, 430–437.

    ADS  MATH  Google Scholar 

  157. Obraztsov, I.F., Nerubaylo, B.V., Zubkov, G.D., Fedik, I.I., On evaluation of optimal parameters of cylindrical shells with spiral eccentric ribs with respect to stability criterion (in Russian), Raschety na Prochnost 26(1985), 3–19.

    Google Scholar 

  158. Palamarchuk, V.G., Polyakov, P.S., On rational stiffening of a stringer shell with imperfections (in Russian), Prikl. Mekh. 12. (1976), 3, 21–27.

    Google Scholar 

  159. Palchevsky, A.S., Minimum weight design of stringer stiffened cylindrical shells under axial compression (in Russian), Prikl. Mekh. 2(1966), 9, 37–43..

    Google Scholar 

  160. Palchevsky, A.S., Cylindrical shells of minimal weight stiffened by stringers of closed profile (in Russian), Prikl. Mekh. 5 (1969), 6, 107–112.

    Google Scholar 

  161. Palchevsky, A.S., Minimum weight design of stringer stiffened cylindrical shells under simultaneous axial compression and internal pressure (in Russian), Prikl. Mekh. 6(1970), 10, 49–54.

    Google Scholar 

  162. Pappas, M., Allentuch, A., Automated optimal design of frame reinforced submersible circular cylindrical shell, J. Ship Res. 17. (1973), 4, 208–216.

    Google Scholar 

  163. Pappas, M., Allentuch, A., Structural synthesis of frame reinforced submersible circular cylindrical hulls, Computers and Structures 4(1974), 253–280.

    Google Scholar 

  164. Pappas, M., Allentuch, A., Pressure hull optimization using general instability equation admitting more than one longitudinal buckling half-wave, J. Ship Res. 19(1975), 18–22.

    Google Scholar 

  165. Pappas, M., Amba-Rao, C.L., Structural synthesis of thin cylindrical shells with spiral-type stiffeners, AIAA Journal 8(1970), 8, 1529–1530.

    ADS  Google Scholar 

  166. Pappas, M., Amba-Rao, CL., A discrete search procedure for the minimization of stiffened shell stability equations, AIAA Journal 8(1970), 11, 2093–2094.

    ADS  Google Scholar 

  167. Pappas, M., Moradi, J., Optimal design of ring stiffened cylindrical shells using multiple stiffener sizes, AIAA Journal 18. (1980), 8, 1020–1022.

    ADS  Google Scholar 

  168. Patel, J.M., Patel, T.S., Minimum weight design of the stiffened cylindrical shell under pure bending, Computers and Structures 11(1980), 6, 559–563.

    MATH  Google Scholar 

  169. Patnaik, S.N., Maiti, M., Optimum design of stiffened structures with constraint of the frequency in the presence of initial stresses, Comp. Meth. Appl. Mech. and Eng. 7(1976), 3, 303–322.

    ADS  MATH  Google Scholar 

  170. Patnaik, S.N., Sankaran, G.V., Optimum design of stiffened cylindrical panels with constraint on the frequency in the presence of initial stresses, Int. J. Numer, Meth. Eng. 10(1976), 2, 283–299.

    MATH  Google Scholar 

  171. Pavel, A., Popa, A.L., Limitele domeniului de stabilitate elastica pentru mantalele recipientelor sferice supuse la presiuna exterioara, Bul. Inst. Petrol, si Gaze (1976), 4, 71–82.

    Google Scholar 

  172. Pavlov, V.M., Shkutin, L.I., Formulae for maximally stable reinforced cylindrical shells under external pressure (in Russian), Zh. Prikl. Mekh. Tekhn. Fiz. (1977), 5, 159–167.

    Google Scholar 

  173. Pfefferkorn, W., Die optimale Gestaltung eines Rohrs in Sandwichbauweise hinsichtlich seiner Stabilität gegen Aussendruck, Plaste und Kautschuk 15(1968), 9, 672–675.

    Google Scholar 

  174. Pietraszkiewicz, W., Lagrangian description and incremental formulation in the non-Linear theory of thin shells, Int. J. Non-linear Mech. 19(1984), 2, 115–140.

    ADS  MATH  Google Scholar 

  175. Piskorsky, L.F., Optimization of circular cylindrical stiffened shells with effect of eccentricity of ribs taken into account (in Russian), Vopr. Vychisl. i Prikl. Mat. 46, Tashkent 1977, 77–84.

    Google Scholar 

  176. Plaut, R.H., Johnson, L.W., Parbery, R., Optimal forms of shallow shells with circular boundary. Part 1: Maximum fundamental frequency, J. Appl. Mech. 51(1984), 9, 526–530.

    ADS  MATH  Google Scholar 

  177. Plaut, R.H., Johnson, L.W., Optimal forms of shallow shells with circular boundary. Part 2: Maximum buckling load, J. Appl. Mech. 51(1984), 9, 531–535.

    ADS  MATH  Google Scholar 

  178. Plaut, R.H., Johnson, L.W., Optimal forms of shallow shells with circular boundary. Part 3: Maximum enclosed volume, J. Appl. Mech. 51 (1984), 9, 536–539.

    ADS  MATH  Google Scholar 

  179. Pochtman, Yu.M., Choice of optimal parameters of sandwich shells as a problem of mathematical programming (in Russian), Soprotivl. Mat. i Teoria Sooruzh. 16(1972), 36–38.

    Google Scholar 

  180. Pochtman, Yu.M., Filatov, G.V., Application of the random search method to optimal design of cylindrical shells (in Russian), Izv. AN SSSR, Mekh. Tverd. Tela (1971), 5, 199–201.

    Google Scholar 

  181. Pochtman, Yu.M., Filatov, G.V., Optimization by the random search method of parameters of stiffened cylindrical shells (in Russian), Prikl. Mekh. 9(1973), 5, 38–43.

    Google Scholar 

  182. Pochtman, Yu.M. Filatov, G.V., Stiffening modes of goffered cylindrical shells (in Russian), Izv. VUZov, Mashinostr. 6(1977), 9–12.

    Google Scholar 

  183. Pochtman, Yu.M., Skalozub, V.V., Generalized model of optimization of compressed cylindrical shells with random parameters (in Russian), Izv. VUZov, Mashinostr. 6(1979), 10–14.

    Google Scholar 

  184. Pochtman, Yu.M., Tugay, O.V., Stability and weight optimization of multilayer stiffened cylindrical shells under combined loadings (in Russian), Gidroaeromekh. i Teoria Uprug. 25. Dnepropetrovsk 1979, 137–147.

    Google Scholar 

  185. Pochtman, Yu.M., Tugay, O.V., Stability and optimal design of multi-layer composite cylindrical shells stiffened by a polyregular system of ribs (in Russian), Mekh. Kompozit. Materialov (1979), 1, 96–105.

    Google Scholar 

  186. Pochtman, Yu.M., Tugay, O.V.., Dynamic stability and optimization of parameters of multilayer stiffened cylindrical shells with attached mass (in Russian), Soprot. Mat. i Teoria Sooruzh. 36(1980), 28–31.

    Google Scholar 

  187. Pochtman, Yu.M., Tugay, O.V., Stiffened multilayer cylindrical shells of minimal weight under axial compression (in Russian), Prikl. Probl. Prochn. i Plastichn., Gorky 1980, 153–160.

    Google Scholar 

  188. Popov, V.G., Choice of optimal core parameters for a sandwich cylindrical shell (in Russian), Trudy Novonikolaevskogo Korablestr. Inst. 23(1961), 109–120.

    Google Scholar 

  189. Prokopev, E.A., Ryabtsev, V.A., On optimization of a circular cylindrical shell under external pressure in the class of piece-wise linear thicknesses (in Russian), Voronezhsky Polit. Inst. 1982, 1–14.

    Google Scholar 

  190. Prokopev, E.A., Ryabtsev, V.A., On optimization of a circular cylindrical shell in the class of piece-wise constant thicknesses subject to external step-wise pressure (in Russian, Izv. VUZov, Mashinostr. JUL (1983), 13–16.

    Google Scholar 

  191. Rabotnov, Yu.N., Local stability of shells (in Russian), Dokl. AN SSSR, Novaya Seria 52(1946), 2, 111–112.

    MathSciNet  Google Scholar 

  192. Rao, S.S., Optimization of complex structures to satisfy static, dynamic and aeroelastic requirements, Int. J. Numer. Meth. Eng. 8(1974), 2, 249–269.

    Google Scholar 

  193. Rao, S.S., Reddy, E.S., Optimum design of stiffened cylindrical shells with natural frequency constraint, Computers and Structures 12(1980), 2, 211–219.

    MATH  Google Scholar 

  194. Rehfield, I.W., Design of stiffened cylinders to resist axial compression, J. Spacecraft and Rockets 10(1973), 5, 346–349.

    ADS  Google Scholar 

  195. Renzi, J. R., Optimization of orthotropic, non-linear, ring-stiffened cylindrical shells under external hydrostatic pressure as applied to mmc materials, Naval Surface Weapons Center, TR 79–305, Sept. 1979.

    Google Scholar 

  196. Rikards, R.B., Dual optimization problem of an orthotopic cylindrical shell (in Russian), Mekh. Polimerov 9(1973), 5, 865–871.

    Google Scholar 

  197. Rikards, R.B., On optimal circular cylindrical shell under compression (in Russian), Mekh. Polimerov 9(1973), 5, 944–947.

    Google Scholar 

  198. Rikards, R.B., Control of elastic properties of a shell subject to loss of stability (in Russian), Mekh. Polimerov 10(1974), 1, 93–100.

    Google Scholar 

  199. Rikards, R.B., Convexity of some classes of optimization problems for multilayer shells under conditions of stability and vibration (in Russian), Izv. AN SSSR, Mekh. Tverd. Tela 15(1980), 1, 145–154.

    MathSciNet  Google Scholar 

  200. Rikards, R.B., Goldmanis, M.V., Optimization of ribbed composite cylindrical shells working for stability under external pressure (in Russian), Mekh. Kompozit. Materialov 16(1980), 3, 468–475.

    Google Scholar 

  201. Rikards, R.B., Teters, G.A., On the choice of optimal parameters of a fibreglass cylindrical shell under axial compression (in Russian), Mekh. Polimerov (1970), 6, 1132–1134.

    Google Scholar 

  202. Rikards, R.B., Teters, G.A., Optimale Projektierung von Zylindermänteln aus Verbundwerkstoffen bei kombinierter Belastung, Plaste und Kautschuk 8(1975), 629–632.

    Google Scholar 

  203. Rikards, R.B., Teters, G.A., Tsypinas, I.K., Synthesis of optimal cylindrical shells of reinforced plastics under external pressure and axial compression (in Russian), Mekh. Polimerov (1972), 2, 301–309.

    Google Scholar 

  204. Rozvany, G.I.N., Olhoff, N., Cheng, K.T., Taylor, J.E., On the solid plate paradox in structural optimization, J. Struct. Mech. 10(1982), 1, 1–32.

    MathSciNet  Google Scholar 

  205. Rudisill, CS., Bhatia, K.G., Second derivatives of the flutter velocity and the optimization of aircraft structures, AIAA Journal 10(1972), 12, 1569–1572.

    ADS  Google Scholar 

  206. Ryabchenko, V.M., On some properties and design methods of thin-walled systems of minimal weight (in Russian), Samoletostr. i Tekhn. Vozdush. Flota 21(1970), 103–108.

    Google Scholar 

  207. Ryabchenko, V.M., Andriyenko, A.I., On the problem of allowing for certain buckling modes in search optimization of thin-walled structures (in Russian), Samoletostr. i Tekhn. Vozdush. Flota 34(1974), 98–106.

    Google Scholar 

  208. Ryabov, A.A., Weight optimization of stiffened cylindrical shells (in Russian), Trudy Sem. po Teorii Obolochek 13, Kazan 1980, 76–83.

    Google Scholar 

  209. Ryabov, A.A., Stolarov, N.N., Weight optimization of stiffened cylindrical shells under axial compression (in Russian), Trudy Sem. po Teorii Obolochek 10(1978), 162–169.

    Google Scholar 

  210. Ryabov, A.A., Stolarov, N.N., Weight optimization of axially compressed stiffened cylindrical shells (in Russian), Trudy Sem. po Teorii Obolochek 12(1979), 161–171.

    Google Scholar 

  211. Ryabtsev, V.A., On optimization of a circular cylindrical shell with prescribed mass under external axisymmetric step-wise pressure (in Russian), Prikl. Mekh. 19(1983), 3, 117–120.

    MathSciNet  Google Scholar 

  212. Ryabtsev, V.A., Optimization of a cylindrical shell with prescribed mass under external pressure (in Russian), Izv. AN SSSR, Mekh. Tverd. Tela (1983), 6, 124–129.

    MathSciNet  Google Scholar 

  213. Salama, A.M., Ross, R.G. Jr., Optimum shell design, AIAA Journal 11(1973), 3, 366–368.

    ADS  Google Scholar 

  214. Salerno, V.L., Levine, B., Buckling of circular cylindrical shells with evenly spaced equal strength circular ring frames, PIBAL Rep. 167 and 169, 1950.

    Google Scholar 

  215. Samsonov, V.I., On rational design of stiffened composite shells with respect to stability (in Russian), Mekh. Polimerov (1978), 3, 481–484.

    Google Scholar 

  216. Schmit, L.A., Morrow, W.M., Richer, T.P., A structural synthesis capability for integrally stiffened cylindrical shells, AIAA Paper 327, 1968.

    Google Scholar 

  217. Semenov, V.N., Weight optimization of a caisson wing under panel stability constraints (in Russian), 4. Vsesoy. Konf. Ustoych. Stroit. Mekh., Moskva 1972, 226 – 227.

    Google Scholar 

  218. Shanley, F.R., Simplified analysis of general instability of stiffened shells in pure bending, J. Aero. Sci. 16(1949), 10, 590 – 592.

    Google Scholar 

  219. Shideler, J.L., Anderson, M.S., Jackson, I.R., Optimum mass-strength analysis for orthotropic ring stiffened cylinders under axial compression, NASA TND-6772, July 1972.

    Google Scholar 

  220. Shirshov, V.P., Local stability of shells (in Russian), Trudy II Vsesoy. Konf. po Teorii Plastin i Obolochek, Lvov 1961, Kiev 1962, 314 – 317.

    Google Scholar 

  221. Shtaerman, I.Ya., Stability of shells (in Russian), Trudy Kievsk. Aviats. Instituta 1 (1936).

    Google Scholar 

  222. Simitses, G.J., Aswani, M., Minimum weight design of stiffened cylinders under hydrostatic pressure, AIAA Paper 538, Pasadena, Jan. 1975.

    Google Scholar 

  223. Simitses, G.J., Giri, J., Minimum weight design of stiffened cylinders subjected to pure torsion, Computers and Structures 7(1977), 5, 667 – 677.

    MATH  Google Scholar 

  224. Simitses, G.J., Giri, J., Optimum weight design of stiffened cylinders subjected to torsion combined with axial compression with and without lateral pressure, Computers and Structures 8(1978), 1, 19 – 30.

    MATH  Google Scholar 

  225. Simitses, G.J., Giri, J., Sheinman, I., Minimum weight design of stiffened cylinders and cylindrical panels under combined loads, AFOSR TR-76 – 0930, Georgia Inst. Techn., Atlanta 1976.

    Google Scholar 

  226. Simitses, G.J., Sheinman, I., Minimum-weight design of stiffened cylindrical panels under combined loads, J. Aircraft 14(1977), 5, 419 – 420.

    Google Scholar 

  227. Simitses, G.J., Sheinman, I., Optimization of geometrically imperfect stiffened cylindrical shells under axial compression, Computers and Structures 9(1978), 4, 377 – 381.

    Google Scholar 

  228. Simitses, G.J., Ungbhakorn, V., Minimum weight design of stiffened cylinders under axial compression, AIAA Journal 13(1975), 6, 750 – 755.

    ADS  MATH  Google Scholar 

  229. Simitses, G.J., Ungbhakorn, V., Weight optimization of stiffened cylinders under axial compression, Computers and Structures 5(1975), 5/6, 305 – 314.

    Google Scholar 

  230. Simodynes, E.E., Gradient optimization of structural weight for specified flutter speed, AIAA Paper 390, 1973.

    Google Scholar 

  231. Singer, J., Baruch, M., Recent studies on optimization for elastic stability of cylindrical and conical shells, Roy Aero. Soc. Centenary Congress, London 1966; Inter. Council Aero. Sci. Paper No. 66–13, 1966, 32 pp.

    Google Scholar 

  232. Skrzypek, J., Bielski, J., Unimodal and bimodal optimal design of elastic toroidal shells subject to buckling under external pressure (in print).

    Google Scholar 

  233. Solodovnikov, V.N., Algorithm for calculation of variable thickness of a shell optimal with respect to stability (in Russian), Dinamika Splosh. Sredy 19 – 20. Novosibirsk 1974, 118 – 128.

    Google Scholar 

  234. Solodovnikov, V.N., On the methods of optimization of shells with respect to stability and to state of stress (in Russian), Dinamika Splosh. Sredy 27, Novosibirsk 1976, 135 – 143.

    Google Scholar 

  235. Solodovnikov, V.N., Optimization of elastic shells of revolution (in Russian), Prikl. Mat. Mekh. 42(1978), 3, 511 – 520.

    MathSciNet  Google Scholar 

  236. Sosa, M.P., Optimizacion de cilindros reforzados por cuadernas sometidos a presion hidrostatica exterior, Ing. Nav. 47(1979), 527, 147 – 157.

    Google Scholar 

  237. Southwell, R., On the collapse of tubes by external pressure, Phil. Mag. ser. 6, 25(1913), 149, 687 – 697;

    Google Scholar 

  238. Southwell, R., On the collapse of tubes by external pressure, Phil. Mag. ser. 6, 26(1913), 153, 502 – 510;

    Google Scholar 

  239. Southwell, R., On the collapse of tubes by external pressure, Phil. Mag. ser. 6, 29(1915), 169, 67 – 76.

    Google Scholar 

  240. Starnes, J.H. Jr., Haftka, R.T., Preliminary design of composite wings for buckling, strength, and displacement constraints, J. Aircraft 16(1979), 564 – 570.

    Google Scholar 

  241. Strelkov, V.V., On weight optimization of stiffened cylindrical shells (in Russian), Stroit, Mekh. Raschet Sooruzh. (1974), 1, 30 – 33.

    Google Scholar 

  242. Stroud, W.J., Sykes, N.P., Minimum-weight stiffened shells with slight meridional curvature designed to support axial compressive loads, AIAA Journal 7(1969), 8, 1599 – 1601.

    ADS  Google Scholar 

  243. Sunder, P.J., Ramakrishnan, C.V., Sengupta, S., Optimum cone angles in aeroelastic flutter, Computers and Structures 17(1983), 1, 25 – 29.

    MATH  Google Scholar 

  244. Switzky, H., The minimum weight design of structures operating in an aerospace environment, Aeronautical Systems Div. TR-62–763-, Oct. 1962.

    Google Scholar 

  245. Switzky, H., Cary, J.W., Minimum weight design of cylindrical structures, AIAA Journal 1(1963), 10, 2330 – 2337.

    MATH  Google Scholar 

  246. Tagiev, I.G., On a certain approximate method for solving boundary-value problems of shallow shells of variable thickness and curvature (in Russian), Izv. AN SSSR, Mekh. Tverd. Tela (1967), 3, 116 – 118.

    Google Scholar 

  247. Tennyson, R.C., A note on the classical buckling load of circular cylindrical shells under axial compression, AIAA Journal 1(1963), 2, 475 – 476.

    Google Scholar 

  248. Tennyson, R.C., Buckling of circular cylindrical shells in axial compression, AIAA Journal 2(1964), 7, 1351 – 1353.

    Google Scholar 

  249. Tennyson, R.C., Hansen, J.S., Optimum design for buckling of laminated cylinders, in [0.296], 409 – 429.

    Google Scholar 

  250. Terebushko, O.I., On stability analysis and design of stiffened cylindrical shells (in Russian), Raschet Prostranstvennykh Konstr. 7(1962), 119 – 134.

    Google Scholar 

  251. Terrovere, V.R., Stability of smooth shells of minimal weight (in Russian), Prikl. Mekh. 9(1973), 12, 30 – 35.

    Google Scholar 

  252. Thornton, V.A., Synthesis of stiffened conical shells, J. Spacecraft and Rockets 9(1972), 3, 189 – 195.

    ADS  Google Scholar 

  253. Timoschenko, S., Einige Stabilitatsprobleme der Elastizitatstheorie, Z. angew. Math. Phys. 58(1910), 4, 337 – 385.

    Google Scholar 

  254. Tomashevsky, V.T., Mikolayev, B.A., Yakovlev, V.S., Optimization of reinforced shells of revolution made out of composite polymeric materials (in Russian), Mekh. Kompozitnykh Mat. 16(1980), 5, 866 – 869.

    Google Scholar 

  255. Toropov, V.V., Weight optimization of composite shells of revolution under the constraints of strength, stiffness and stability (in Russian), Prikl. Problemy Prochn. i Plastich. 13, Gorky 1979, 122 – 127.

    Google Scholar 

  256. Tsien, H.S., Lower buckling load in the nonlinear buckling theory of thin shells, Quart. Appl. Math. 5(1947), 2, 236 – 237.

    Google Scholar 

  257. Tugay, O.V., Stiffened multilayer cylindrical shells of minimal weight under external pressure (in Russian), Izv. VUZov, Stroit. i Arkhit. (1979), 4, 28 – 32.

    Google Scholar 

  258. Urzhumtsev, Yu.S., Nikitina, L.M., Babe, G.D., Optimization of multilayer fencing polymeric structures with respect to thermostability (in Russian), Mekh. Kompozitnykh Mat. 17(1981), 4, 689 – 695.

    Google Scholar 

  259. Uzhva, V.V., Parameters of optimal stiffening of a cylindrical shell in the zone of concentrated effect (in Russian), Izv. VUZov, Mashinostr. 9(1981), 6 – 10.

    Google Scholar 

  260. Vanderplaats, G.N., CONMIN — a FORTRAN program for constrained function minimization, NASA TM X-62–282, Ames Research Center, Aug. 1973.

    Google Scholar 

  261. Vasilev, A.N., Ivanov, V.A., Optimal problems of stability of layered cylindrical shells with core (in Russian), Trudy 4 Simp, po Mekh. Konstr. iz Kompoz. Mat., Novosibirsk 1984, 143 – 148.

    Google Scholar 

  262. Volynsky, M.I., Palchevsky, A.S., Pochtman, M.Yu., Optimal design of ribbed cylindrical shells with large cutouts under axial compression (in Russian), Prikl. Mekh. 11(1975), 5, 118 – 121.

    Google Scholar 

  263. Zimmermann, R., Mass minimization of composite material cylindrical shells and curved panels with buckling constraints, in [0.72], 438 – 443.

    Google Scholar 

  264. Zyczkowski, M., Optimum design of point-reinforcement of cylindrical shells with respect to their stability, Arch. Mech. Stos. 19(1967), 5, 699 – 713.

    Google Scholar 

  265. Zyczkowski, M., Optimale Formen des dünnwandigen geschlossenen Querschnittes eines Balkens bei Berücksichtigung von Stabilitätsbedingungen, Z. angew. Math. Mechanik 48(1968), 7, 455 – 462.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gajewski, A., Zyczkowski, M. (1988). Shells. In: Optimal Structural Design under Stability Constraints. Mechanics of Elastic Stability, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2754-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2754-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7737-8

  • Online ISBN: 978-94-009-2754-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics