Skip to main content

Problems of Optimal Structural Design

  • Chapter

Part of the book series: Mechanics of Elastic Stability ((MEST,volume 13))

Abstract

Mathematical problems of optimal structural design — as of most optimization problems — consist of four basic elements: design objective, control variables or decisive variables called here design variables, constraints, and equations of state. We look for upper or lower bound (maximum or minimum) of the design objective specified as a function or functional of design variables, functions or vectors (sets of functions or of parameters) under certain constraints. These constraints are usually expressed in terms of some other variables, called state variables or behavioural variables; they may also appear in the objective function and are interrelated and related to design variables by the equations of state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banichuk, N.V., Recent problems of optimal structural design (in Russian), Mekh. Tverd. Tela (1982), 2, 110–124.

    MathSciNet  Google Scholar 

  2. Barnett, R.L., Survey on optimum structural design, Experim. Mechanics 6 (1966), 12, 19A – 26A.

    Article  Google Scholar 

  3. Berke, L., Venkayya, V.B., Review of optimality criteria approaches in structural optimization, Proc. Struct. Optimiz. Symp. ASME, AMD, 7, (1974), 23–34.

    Google Scholar 

  4. Bochenek, B., Kordas, Z., Zyczkowski, M., Optimal plastic design of a cross section under torsion with small bending, J. Struct. Mech. 11 (1983), 3, 383–400.

    Article  Google Scholar 

  5. Bushneil, D., Buckling of shells — pitfall for designers, AIAA Journal 19 (1981), 9, 1183–1226.

    Article  ADS  Google Scholar 

  6. Churakov, V.L.,Gerasimov, E.N., Optimal design of curved bars and axisymmetric plates (in Russian), Vektornaya i Skalarnaya Optimizatsya Konstruktsiy vyp. 1, Izhevsk 1981, 123–164.

    Google Scholar 

  7. Cox, H.L., Smith, H.E., Structures of minimum weight, Aero. Res. Counc. Rep. and Mem. 1923 (1943).

    Google Scholar 

  8. Cox, H.L., The application of the theory of stability in structural design, J. Roy. Aero. Soc. 62 (1958), 571, 497–515.

    Google Scholar 

  9. Cyras, A.A., Theory of reliability and optimal structural design (in Russian), Lit. Mekh. Sbornik (1968), 2, 115–122.

    Google Scholar 

  10. Cyras, A.A., A general statement of optimization problems in structural mechanics (in Russian), Issled. po Teorii Sooruzh. 21 (1975), 18–25.

    Google Scholar 

  11. Drucker, D.C., Shield, R.T., Design for minimum weight, Proc. 9th Int. Congr. Appl. Mech. Brussels 1956, Vol. 5 (1957), 212–222.

    Google Scholar 

  12. Drucker, D.C., Shield, R.T., Bounds on minimum weight design, Quart. Appl. Math. 15 (1957), 3, 269–281.

    MathSciNet  MATH  Google Scholar 

  13. Fleury, C, Geradin, M., Optimality criteria and mathematical programming in structural weight optimization, Computers and Structures 8 (1978), 7–17.

    Article  MATH  Google Scholar 

  14. Foulkes, J., Minimum weight design and the theory of plastic collapse, Quart. Appl. Math. 10 (1953), 4, 347–358.

    MathSciNet  MATH  Google Scholar 

  15. Galileo Galilei Linceo, Discorsi e dimonstrazioni matematiche, Leiden 1638.

    Google Scholar 

  16. Gallagher, R.H., Fully stressed design, in [0.25], 19–32.

    Google Scholar 

  17. Gerard, G., Optimum structural design concepts for aerospace vehicles, J. Spacecraft and Rockets 3 (1966), 1, 5–18.

    Article  ADS  Google Scholar 

  18. Haug, E.J., A review of distributed parameter structural optimization, in [0.60], 3–74.

    Google Scholar 

  19. Hemp, W.S., Theory of structural design, CoA Rept. 115 (1958).

    Google Scholar 

  20. Hencky, H., Über langsame stationäre Strömungen in plastischen Massen mit Rücksicht auf die Vorgänge beim Walzen, Pressen und Ziehen von Metallen, Z. Angew. Math. Mechanik 5 (1925), 115–124.

    MATH  Google Scholar 

  21. Hilton, H.H., Feigen, M., Minimum weight analysis based on structural reliability, J. Aerosp. Sci. 27, (1960), 9, 641–652.

    MathSciNet  MATH  Google Scholar 

  22. Hoff, N.J., Necking and rupture of rods under tensile loads, J. Appl. Mech. 20 (1953), 1, 105–108.

    Google Scholar 

  23. Hu, T.C., Shield, R.T., Uniqueness in the optimum design of structures, J. Appl. Mech. 28 (1961), 2, 284–287.

    MathSciNet  MATH  Google Scholar 

  24. Kachanov, L.M., On the creep rupture time (in Russian), Izv. AN SSSR, Otd. Tekhn. Nauk (1958), 8, 26–31.

    Google Scholar 

  25. Kalaba, R., Design of minimal — weight structures for given reliability and cost. J. Aerosp. Sci 29 (1962), 3, 355–356.

    Google Scholar 

  26. Kicher, T.P., Optimum design — minimum weight versus fully stressed, Proc. ASCE, J. Struct. Div. 92 (1966), 6, 265–279.

    Google Scholar 

  27. Kordas, Z., Zyczkowki, M., Investigations of the shape of thick-walled non-circular cylinders showing full plasticization at the collapse, Bull. Acad. Pol., Ser. Sci. Techn. 18 (1970), 10, 839–847 (English summary);

    MATH  Google Scholar 

  28. Kordas, Z., Zyczkowki, M., Investigations of the shape of thick-walled non-circular cylinders showing full plasticization at the collapse Rozpr. Inz. 18 (1970), 3, 371–390 (Polish full text).

    MATH  Google Scholar 

  29. Kordas, Z., Problematyka okrealania ksztaltow cial wykazujacych calkowite uplastycznienie w stadium zniszczenia, Zeszyty Naukowe Politechniki Krakowskiej, Postawowe Nauki Techniczne 15 (1977).

    Google Scholar 

  30. Kruzelecki, J., Axially symmetric shells of uniform membrane strength as optimal shells, Bull. Acad. Pol, Ser. Sci. Techn. 27 (1979), 8/9, 353–360.

    Google Scholar 

  31. Kruzelecki, J., Zyczkowski, M., Optimal structural design of shells — a survey, Solid Mech. Arch. 10 (1985), 2.

    Google Scholar 

  32. Krzys, W., Zyczkowski, M., Klasyfikacja problemow ksztaltowania wytrzymalosciowego, Czas. Techn. 68 (1963), 2, 1–4.

    Google Scholar 

  33. Liszka, T., Zyczkowski, M., Optymalne ksztaltowanie nierownomiernie nagrzanych tarez wirujacych z uwagi na nosnoso sprezysta i graniczna, Mech. Teor. Stos. 14 (1976), 2, 283–302.

    Google Scholar 

  34. Malkov, V.P., Strongin, R.G., Minimum weight design based on strength constraints (in Russian), Mietody Reshenya Zadach Uprugosti i Plastichnosti 4, Gorky 1971, 138–149.

    Google Scholar 

  35. Masur, E.F., Optimum stiffness and strength of elastic structures, Proc. ASCE, J. Eng. Mech. Div. 96 (1970), 5, 621–639.

    Google Scholar 

  36. Michell, A.G.M., The limits of economy of material in frame structures, Phil Mag., Series 6, 8, (1904), 589–597.

    Article  Google Scholar 

  37. Moses, F., Kinser, D.E., Optimum structural design with failure probability constraints, AIAA Journal 6 (1967), 6, 1152–1158.

    Google Scholar 

  38. Mroz, Z., On a problem of minimum weight design, Quart. Appl. Math. 19 (1961), 127–135.

    MathSciNet  MATH  Google Scholar 

  39. Mroz, Z., Limit analysis of plastic structures subject to boundary variations, Arch. Mech. Stos. 15 (1963), 1, 63–76.

    MathSciNet  MATH  Google Scholar 

  40. Nemirovsky, Yu.V., Reznikov, B.S., Beams and plates of uniform strength in creep conditions (in Russian), Mashinovedenye (1969), 2, 58–64.

    Google Scholar 

  41. Nemirovsky, Yu.V., Mazalov, V.N., Vakulenko, L.D., Optimal structural design — a list of references 1948–1974 (in Russian), AN SSSR, Sibirsk. Otd., Novosibirsk 1975, Vol. 1/2.

    Google Scholar 

  42. Neut, A., van der, The interaction of local buckling and column failure of thin-walled compression members, Proc. 12th Int. Congr. Appl. Mech. Stanford 1968, Springer 1969, 389–399.

    Google Scholar 

  43. Olhoff, N., A survey of the optimal design of vibrating structural elements, Shock and Vibration Digest 8 (1976), 8, 3–10;

    Article  Google Scholar 

  44. Olhoff, N., A survey of the optimal design of vibrating structural elements, Shock and Vibration Digest 8 (1976), 9, 3–10.

    Article  Google Scholar 

  45. Parimi, S.R., Cohn, M.Z., Optimal criteria in probabilistic structural design, in [0.36], 278–293.

    Google Scholar 

  46. Plaut, R.H., On the stability and optimal design of elastic structures, in [0.231], 547–577.

    Google Scholar 

  47. Pochtman, Yu.M., Optimal design of certain bar and continuous systems with stability constraints by mathematical programming methods, a survey (in Russian), Gidroaeromekhanika i Teoria Uprugosti 19(1975), 107–114.

    Google Scholar 

  48. Pochtman, Yu.M., Khariton, L.E., Optimal design of a structure considering reliability (in Russian), Stroit. Mekh, i Raschet Sooruzh. (1976), 6, 8–15.

    Google Scholar 

  49. Prager, W., Optimal structural design for given stiffness in stationary creep, Z. Angew. Math. Physik 19 (1968), 252–256.

    Article  MATH  Google Scholar 

  50. Prager, W., Optimality criteria derived from classical extremum principles, in [0.12].

    Google Scholar 

  51. Prager, W., Optimization of structural design, J. Opt. Theory and Appl, 6 (1970), 1, 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  52. Prager, W., Conditions for structural optimality, Comp, and Struct. 2 (1972), 5, 833–840.

    Article  Google Scholar 

  53. Rangacharyulu, M.A.V., Done, G.T.S., A survey of structural optimization under dynamic constraints, Shock and Vibr. Digest 11 (1979), 12, 15–25.

    Article  Google Scholar 

  54. Razani, R., The behaviour of the fully stressed design of structures and its relationship to minimum weight design, AIAA Journal 3 (1965), 12, 2262–2268.

    Article  Google Scholar 

  55. Reinschmidt, K., Cornell, CA., Brotchie, J.F., Iterative design and structural optimization, Proc. ASCE, J. Struct. Div. 92 (1966), ST6, 281–318.

    Google Scholar 

  56. Reytman, M.I., On the theory of optimal design of structures made of plastics with the time factor taken into account (in Russian), Mekh. Polimerov (1967), 2, 357–360.

    Google Scholar 

  57. Reytman, M.L, Formulation of problems of optimal design of building structures (in Russian), Stroit. Mekh. i Raschet Sooruzh. (1978), 4, 6–14.

    Google Scholar 

  58. Reytman, M.L, Shapiro, G.S., Theory of optimal design in structural mechanics, elasticity and plasticity (in Russian), Itogi Nauki, Uprugost i Plastichnost (1964), 81–124, Moskva 1966.

    Google Scholar 

  59. Robinson, EX., Effect of temperature variation on the longtime rupture strength of steels, Trans. ASME 74 (1952), 777–780.

    Google Scholar 

  60. Rozvany, G.I.N., Optimal force transmission by flexure — the present state of knowledge, in [0.36], 350–371.

    Google Scholar 

  61. Rozvany, G.I.N., Hill, R.D., The theory of optimal load transmission by flexure, Adv. Appl. Mech. 16 (1976), 183–308.

    Article  MATH  Google Scholar 

  62. Rozvany, G.I.N., Mroz, Z., Analytical methods in structural optimization, Appl. Mech. Rev. 30 (1977), 11, 1461–1470.

    Google Scholar 

  63. Save, M.A., Some aspects of minimum-weight design, Engineering Plasticity, Cambridge University Press (1968), 611–626.

    Google Scholar 

  64. Save, M.A., A general criterion for optimal structural design, J. Optimiz. Theory and Appl. 15 (1975), 1, 119–129.

    Article  MathSciNet  MATH  Google Scholar 

  65. Schmit, L.A., Structural synthesis — its genesis and development, AIAA Journal 19 (1981), 10, 1249–1263.

    Article  ADS  Google Scholar 

  66. Schmit, L.A., Richer, T.P., Synthesis of material and configuration selection, Proc. ASCE, J. Struct. Div. 88 (1962), ST3, 79–102.

    Google Scholar 

  67. Schmit, L.A., Morrow, W.M., Structural synthesis with buckling constraints, Proc. ASCE, J. Struct. Div. 89 (1963), ST2, 107–126.

    Google Scholar 

  68. Shanley, F.R., Principles of structural design for minimum weight, J. Aero. Sci. 16 (1949), 3.

    Google Scholar 

  69. Sheu, C.Y., Prager, W., Recent developments in optimal structural design, Appl Mech. Rev. 21 (1968), 10, 985–992.

    Google Scholar 

  70. Shield, R.T., Optimum design methods for structures, in Plasticity, ed. E.H. Lee and P.S. Symonds, Pergamon Press 1960, 582–593.

    Google Scholar 

  71. Shinozuka, M., Yang, J.N., Optimum structural design based on reliability and proof-load test, Annals of Reliability and Maintainab. 8 (1969), 375–391.

    Google Scholar 

  72. Skrzypek, J., Zyczkowski, M., Termination of processes of finite plastic deformations of incomplete toroidal shells, Sol. Mech. Arch. 8 (1983), 1, 39–98.

    MATH  Google Scholar 

  73. Szuwalski, K., Zyczkowski, M., On the phenomenon of decohesion in perfect plasticity, Int. J. Sol. Struct. 9 (1973), 1, 85–98.

    Article  Google Scholar 

  74. Thompson, J.M.T., Optimization as a generator of structural instability, Int. J. Mech. Sci. 14 (1972), 9, 627–629.

    Article  Google Scholar 

  75. Thompson, J.M.T., Supple, W.J., Erosion of optimum designs by compound branching phenomena, J. Mech. Phys. Solids 21 (1973), 3, 135–144.

    Article  ADS  Google Scholar 

  76. Troitsky, V.A., Optimization of elastic bars in the presence of free vibrations (in Russian), Izv. AN SSSR, Mekh. Tverd. Tela (1976), 3, 145–152.

    Google Scholar 

  77. Vanderplaats, G.N., Structural optimization — past, present, and future, AIAA Journal 20 (1982), 7, 992–1000.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. Venkayya, V.B., Structural optimization: a review and some recommendations, Int. J. Numer. Meth. Engng. 13 (1978), 2, 203–228.

    Article  Google Scholar 

  79. Villarceau, Y., Sur l’établissement des arches de pont envisagé au point de vue de la plus grande stabilité, Mém. prés, par div. savants 12 (1854), 503–822.

    Google Scholar 

  80. Vinogradov, A.I., Problems of minimum-weight analysis of structures (in Russian), Trudy Khark. Inst. Inzh. Zhel.-Dor. Transp. 25 (1955), 1–175.

    Google Scholar 

  81. Vinogradov, A.I., Investigation of the cost function in the optimum structural design (in Russian), Issled. po Teorii Sooruzh 14 (1965), 143–154.

    Google Scholar 

  82. Vinogradov, A.I., The problem of optimal design and its peculiarities for bar systems (in Russian), Stroit. Mekh. i Raschet Sooruzh. (1974), 4, 55–60.

    Google Scholar 

  83. Wasiutynski, Z., Postawowe wiadomosci o ksztaltowaniu wytrzymalosciowym, Arch. Inz. Ladowej 2 (1956), 1/2, 3–14.

    Google Scholar 

  84. Wasiutynski, Z., Brandt, A., The present state of knowledge in the field of optimum design of structures, Appl. Mech. Rev. 16 (1963), 5, 341–350.

    Google Scholar 

  85. Zavelani-Rossi, A., Minimum-weight design for two-dimensional bodies, Meccanica 4 (1969), 4, 445–452.

    Article  Google Scholar 

  86. Zyczkowski, M., Optimal structural design in rheology, J. Appl. Mech. 38 (1971), 1, 39–46.

    Article  ADS  Google Scholar 

  87. Zyczkowski, M., Optymalne ksztaltowanie wytrzymalosciowe powlok, Konstrukcje powlokowe, teoria i zastosowania, Vol. 1, PWN 1978, 147–183.

    Google Scholar 

  88. Zyczkowski, M., Kruzelecki, J., Optimal design of shells with respect to their stability, in [0.36], 229–247.

    Google Scholar 

  89. Zyczkowski, M., Kruzelecki, J., Aktualne kierunki rozwoju optymalnego ksztaltowania wytrzymalosciowego powlok, Zesz. Nauk. Wyzszej Szk. Inz. w Opolu, Budownictwo 19 (1984), 57–97.

    Google Scholar 

  90. Zyczkowski, M., Swisterski, W., Optimal structural design of flexible beams with respect to creep rupture time, in [0.58], 795–810.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gajewski, A., Zyczkowski, M. (1988). Problems of Optimal Structural Design. In: Optimal Structural Design under Stability Constraints. Mechanics of Elastic Stability, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2754-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2754-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7737-8

  • Online ISBN: 978-94-009-2754-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics