Skip to main content

Late Pleistocene and Holocene lake fluctuations in the Sevier Lake Basin, Utah, USA

  • Conference paper
Book cover Paleolimnology and the Reconstruction of Ancient Environments
  • 100 Accesses

Abstract

Sevier Lake is the modern lake in the topographically closed Sevier Lake basin, and is fed primarily by the Sevier River. During the last 12000 years, the Beaver River also was a major tributary to the lake. Lake Bonneville occupied the Sevier Desert until late in its regressive phase when it dropped to the Old River Bed threshold, which is the low point on the drainage divide between the Sevier Lake basin and the Great Salt Lake basin. Lake Gunnison, a shallow freshwater lake at 1390 m in the Sevier Desert, overflowed continuously from about 12000 to 10000 yr B.P., into the saline lake in the Great Salt Lake basin, which continued to contract. This contrast in hydrologic histories between the two basins may have been caused by a northward shift of monsoon circulation into the Sevier Lake basin, but not as far north as the Great Salt Lake basin. Increased summer precipitation and cloudiness could have kept the Sevier Lake basin relatively wet.

By shortly after 10000 yr B.P. Lake Gunnison had stopped overflowing and the Sevier and Beaver Rivers had begun depositing fine-grained alluvium across the lake bed. Sevier Lake remained at an altitude below 1381 m during the early and middle Holocene. Between 3000 and 2000 yr B.P. the lake expanded slightly to an altitude of about 1382.3 m. A second expansion, probably in the last 500 years, culminated at about 1379.8 m. In the mid 1800s the lake had a surface altitude of 1379.5 m. Sevier Lake was essentially dry (1376 m) from 1880 until 1982. In 1984–1985 the lake expanded to a 20th-century high of 1378.9 m in response to abnormally high snow-melt runoff in the Sevier River. The late Holocene high stands of Sevier Lake were most likely related to increased precipitation derived from westerly air masses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnow, T., 1984. Water-level and water-quality changes in Great Salt Lake, Utah, 1847–1983. U.S. Geol. Survey Circ. 913: 22 pp.

    Google Scholar 

  • Canby, T. Y., 1984. El Nino’s ill wind. Natl. Geog. 165: 144–183.

    Google Scholar 

  • Cane, M. A., 1986. El Niño. Ann. Rev. Earth Planet. Sci. 14: 43–70.

    Article  Google Scholar 

  • Currey, D. R., 1980. Radiocarbon dates and their stratigraphic implications from selected localities in Utah and Wyoming. Encyclia, J. Utah Acad. Sci. Arts Lett. 57: 110–115.

    Google Scholar 

  • Currey, D. R., 1982. Lake Bonneville: Selected features of relevance to neotectonic analysis. U.S. Geol. Survey Open-File Rept. 82–1070: 30 pp.

    Google Scholar 

  • Currey, D. R. & S. R. James, 1982. Paleoenvironments of the northeastern Great Basin and northeastern Basin rim region: A review of geological and biological evidence. Soc. Am. Arch. Pap. 2: 27–52.

    Google Scholar 

  • Currey, D. R. & C. G. Oviatt, 1985. Durations, average rates, and probable causes of Lake Bonneville expansions, Stillstands, and contractions during the last deep-lake cycle, 32 000 to 10 000 years ago. In P. A. Kay & H. F. Diaz (eds.), Problems of and prospects for predicting Great Salt Lake levels: Papers from a conference held in Salt Lake City, March 26–28, 1985. Center for Public Affairs and Administration, Univ. Utah: 9–24.

    Google Scholar 

  • Davis, O. K., 1986. A late glacial pluvial maximum, the history of the Arizona monsoon, and the astronomical theory of climatic change. Am. Quat. Asso. (AMQUA) Prog. Abs.: 127.

    Google Scholar 

  • Davis, O. K., 1987. Late Quaternary global temperature change versus seasonal precipitation change in the western U.S. Geol. Soc. Am. Abs. Prog. 19: 636.

    Google Scholar 

  • Davis, O. K. & W. D. Sellers, 1987. Contrasting climatic histories for western North America during the early Holocene. Curr. Res. Pleist. 4: 87–89.

    Google Scholar 

  • Eardley, A. J., 1962. Glauber’s salt bed west of Promontory Point, Great Salt Lake. Utah Geol. Min. Survey Spec. Stud. 1: 12 pp.

    Google Scholar 

  • Forester, R. M., 1987. Late Quaternary paleoclimatic records from lacustrine ostracodes. In W. F. Ruddiman & H. E. Wright, Jr. (eds.), North America and adjacent oceans during the last déglaciation. Geol. Soc. Am., Geol. N. Am. K-3: 261–276.

    Google Scholar 

  • Forester, R. M. & V. Markgraf, 1984. Late Pleistocene and Holocene seasonal climatic records from lacustrine ostra-code assemblages and regional (pollen) vegetational patterns in southwestern U.S.A. Am. Quat. Asso. (AMQUA) Prog. Abs.: 43–45.

    Google Scholar 

  • Gilbert, G. K., 1890. Lake Bonneville. U.S. Geol. Survey Mono. 1: 438 pp.

    Google Scholar 

  • Guthrie, R. L. & J. E. Witty, 1982. New designations for soil horizons and layers and the new Soil Survey Manual. Soil Sci. Soc. Am. J. 46: 443–444.

    Article  Google Scholar 

  • Hahl, D. C. & J. C. Mundorff, 1968. An appraisal of the quality of surface water in the Sevier Lake basin, Utah, 1964. Utah Dept. Nat. Res. Tech. Pub. 19: 41 pp.

    Google Scholar 

  • Hampton, D.A., 1978. Geochemistry of the saline and carbonate minerals of Sevier Lake playa, Millard County, Utah. M.S. thesis, Univ. Utah, Salt Lake City: 75 pp.

    Google Scholar 

  • Isgreen, M. C, 1986. Holocene environments in the Sevier and Escalante Desert basins, Utah: A synthesis of Holocene environments in the Great Basin. M.S. thesis, Univ. Utah, Salt Lake City: 134 pp.

    Google Scholar 

  • Kay, P. A. & H. F. Diaz (eds.), 1985. Problems of and prospects for predicting Great Salt Lake levels. Papers from a conference held in Salt Lake City, March 26–28, 1985. Center for Public Affairs and Administration, Univ. Utah: 309 pp.

    Google Scholar 

  • Machette, M. N., 1985. Calcic soils of the southwestern United States. In D. L. Weide (ed.), Soils and Quaternary geology of the southwestern Untied States. Geol. Soc. Am. Spec. Pap. 203: 1–21.

    Google Scholar 

  • Markgraf, V. & L. Scott, 1981. Lower timberline in central Colorado during the past 15000 yr. Geology 9: 231–234.

    Article  Google Scholar 

  • McKenzie, J. A. & G. P. Eberli, 1985. Late Holocene lake-level fluctuations of the Great Salt Lake (Utah) as defined from oxygen-isotope and carbonate contents of cored sediments. In P. A. Kay & H. F. Diaz (eds.), Problems of and prospects for predicting Great Salt Lake levels. Papers from a conference held in Salt Lake City, March 26–28, 1985. Center for Public Affairs and Administration, Univ. Utah: 25–39.

    Google Scholar 

  • Miller, R. D., R. Van Horn, W. E. Scott & R. M. Forester, 1980. Radiocarbon date supports concept of continuous low levels of Lake Bonneville since 11 000 yr B.P. Geol. Soc. Am. Abs. with Prog. 12: 297–298.

    Google Scholar 

  • Mitchell, V. L., 1976. The regionalization of climate in the western United States. J. Appl. Metero. 15: 920–927.

    Article  Google Scholar 

  • Morrison, R. B., 1965. Lake Bonneville: Quaternary stratigraphy of eastern Jordan Valley, south of Salt Lake City, Utah. U.S. Geol. Survey Prof. Pap. 477: 80 pp.

    Google Scholar 

  • Morrison, R. B., 1966. Predecessors of Great Salt Lake. Utah Geol. Soc. Guidebook Geol. Utah 20: 77–104.

    Google Scholar 

  • Mott, R. J., D. R. Grant, R. Stea & S. Occhietti, 1986. Late-glacial climatic oscillation in Atlantic Canada equivalent to the Allerod/Younger Dryas event. Nature 323: 247–250.

    Article  Google Scholar 

  • Oviatt, C. G., 1987a. Quaternary geology of part of the Sevier Desert, Millard County, Utah. Utah Geol. Min. Survey Open-File Rept. 106: 120 pp.

    Google Scholar 

  • Oviatt, C. G., 1987b. Lake Bonneveille stratigraphy at the Old River Bed, Utah. Am. J. Sci. 287: 383–398.

    Google Scholar 

  • Oviatt, C. G. & W. D. McCoy, 1986. New radiocarbon and amino acid age constraints on Holocene expansions of Great Salt Lake, Utah. Am. Quat. Asso. (AMQUA) Prog. Abs.: 103.

    Google Scholar 

  • Rasmussen, E. M. & J. M. Wallace, 1983. Meteorological aspects of the El Niño/Southern Oscillation. Science 222: 1195–1202.

    Article  Google Scholar 

  • Rollins, H. B., J. B. Richardson III & D. H. Sandweiss, 1986. The birth of El Niño: Geoarchaeological evidence and implications. Geoarchaeology 1: 3–15.

    Article  Google Scholar 

  • Scott, W. E., W. D. McCoy, R. R. Shroba & M. Rubin, 1983. Reinterpretation of the exposed record of the last two cycles of Lake Bonneville, western Untied States. Quat. Res. 20: 261–285.

    Article  Google Scholar 

  • Simms, S. R., 1985. Radiocarbon dates from 42MD300, Sevier Desert, western Utah. Weber State College, Archaeo. Tech. Prog. Rept.: 9 pp.

    Google Scholar 

  • Simms, S. R. & M. C. Isgreen, 1984. Archaeological excavations in the Sevier and Escalante Deserts, Utah. Univ. Utah Archaeo. Center Rept. Investig. 83–12: 446 pp.

    Google Scholar 

  • Soil Survey Staff, 1975. Soil taxonomy. U.S. Dept. Agric. Agrie. Handbook 436: 754 pp.

    Google Scholar 

  • Spaulding, W. G. & L. J. Graumlich, 1986. The last pluvial climatic episodes in the deserts of southwestern North America. Nature 320: 441–444.

    Article  Google Scholar 

  • Spencer, R. J., M. J. Baedecker, H. P. Eugster, R. M. Forester, M. B. Goldhaber, B. F. Jones, K. Kelts, J. McKenzie, D. B. Madsen, S. L. Rettig, M. Rubin & S. J. Bowser, 1984. Great Salt Lake and precursors, Utah: The last 30000 years. Contrib. Min. Pet. 86: 321–334.

    CAS  Google Scholar 

  • Thompson, R. S., L. J. Toolin & R. J. Spencer, 1987. Radiocarbon dating of Pleistocene lake sediments in the Great Basin by accelerator mass spectrometry (AMS). Geol. Soc. Am. Abs. Prog. 19: 868.

    Google Scholar 

  • Whelan, J. A., 1969. Subsurface brines and soluble salts of subsurface sediments, Sevier Lake, Millard County, Utah. Utah Geol. Min. Survey Spec. Stud. 30: 13 pp.

    Google Scholar 

  • Van Devender, T. R., 1987. Holocene vegetation and climate in the Puerto Blanco Mountains, southwestern Arizona. Quat. Res. 27: 51–72.

    Article  Google Scholar 

  • Varnes, D. J. & R. Van Horn, 1984. Surficial geologic map of the Qak City area, Millard County, Utah. U.S. Geol. Survey Open-File Rept. 84–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ronald B. Davis

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this paper

Cite this paper

Oviatt, C.G. (1990). Late Pleistocene and Holocene lake fluctuations in the Sevier Lake Basin, Utah, USA. In: Davis, R.B. (eds) Paleolimnology and the Reconstruction of Ancient Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2655-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2655-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7697-5

  • Online ISBN: 978-94-009-2655-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics