Skip to main content

Some Upper Bounds for the Spherical Derivative

  • Chapter
Deformations of Mathematical Structures
  • 229 Accesses

Abstract

The author answers the question: what can be said on functions with a Nevanlinna deficient value and of positive lower order λ less than 1/2 ? It is given in the following three theorems: Thm. 1. Let f be a meromorphic function of lower order λ, 0 < λ < 1/2, such that δ(∞, f) > 1 - cos πλ. Then

$$ {\lim_{{r \to - \infty }}}\inf \frac{{\log \mu \left( {r,f} \right)}}{{T\left( {r,f} \right)}} \leqslant \frac{{ - \pi \lambda }}{{\sin \pi \lambda }}\left( {\cos \pi \lambda + \delta (\infty, f) - 1} \right) $$
(1)

Thm. 2. Given λ, 0 < λ < 1/2, and d, 1 - cos πλ < d < 1, there exists a meromorphic function f of order λ and of lower order λ such that δ(∞, f) = d and

$$ {\lim_{{r \to - \infty }}}\inf \frac{{\log \mu \left( {r,f} \right)}}{{T\left( {r,f} \right)}} = \frac{{ - \pi \lambda }}{{\sin \pi \lambda }}\left( {\cos \pi \lambda + d - 1} \right) $$
(2)

Thm. 3. Given λ, 0 < λ < 1/2, and d, 0 < d < 1 - cos πλ, there exists a meromorphic function f of order λ and of lower order λ such that δ(∞, f) = d and

$$\mathop{{\lim inf}}\limits_{{{{r}^{{ \to \infty }}}}} \frac{{r\mu (r,f)}}{{T(r,f)}} \geqslant \frac{{\pi {{\lambda }^{2}}}}{2}.$$
(3)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANDERSON, J.M. and S. TOPPILA: ‘The growth of the spherical derivative of a meromorphic function of finite lower order’, J. London Math. Soc. (2), 27 (1983), 289–305.

    Article  MathSciNet  MATH  Google Scholar 

  2. EDREI, A.: ‘A local form of the Phragmén-Londelöf indicator’, Mathematika 17 (1970), 149–172.

    Article  MathSciNet  MATH  Google Scholar 

  3. ESSEN, M.R., J.F. ROSSI and D.F. SHEA: ‘A convolution inequality with applications in function theory’, Contemporary Mathematics 25 (1983), 141–147.

    MathSciNet  MATH  Google Scholar 

  4. FUCHS, W.H.J.: ‘A theorem on min|z| log|f(z)|/T(r, f)’, Proc. of the Symposium on Complex Analysis in Canterbury 1973. London Math. Soc. Lecture Note Series 12 (1974), 69–72.

    Google Scholar 

  5. NEVANLINNA, R.: Analytic functions. Springer-Verlag, Berlin — Heidelberg — New York, 1970.

    MATH  Google Scholar 

  6. TOPPILA, S.: ‘On the growth of the spherical derivative of a meromorphic function’, Ann. Acad. Scient. Fenn. Ser. A I Math. 7 (1982), 119–139.

    MathSciNet  MATH  Google Scholar 

  7. TOPPILA, S.: ‘On the spherical derivative of an entire function’, Manuscripta Math. 53 (1985), 225–234.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Toppila, S. (1989). Some Upper Bounds for the Spherical Derivative. In: Ławrynowicz, J. (eds) Deformations of Mathematical Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2643-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2643-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7693-7

  • Online ISBN: 978-94-009-2643-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics