Skip to main content

Some Differential Operators in Real and Complex Geometry

  • Chapter
Deformations of Mathematical Structures

Abstract

The famous Laplace-Beltrami operator △ acting on differential forms on a Riemannian manifold M determines in some sense the geometry of M. For example the Hodge decomposition theorem implies that in the compact case

$$ X(M) = Trace {e^{{ - t{\Delta_{{even}}}}}} - Trace {e^{{ - t{\Delta_{{odd}}}}}} $$

where X(M) is the Euler characteristic of M and \( {\Delta_{\text{even}}} = \Delta {\left| {_{p{even}}^{ \oplus }\Lambda P(M),{ }{\Delta_{\text{odd}}} = \Delta } \right|_p}_{\text{odd}}^{ \oplus }\Lambda P \) Of course the theory of the operator in the complex case is much richer. We are going to give a short review of the theory of the Laplace-Beltrami operator on compact complex manifolds. In particular, the Hodge decomposition and its applications will be given. The case of a compact Kähler manifold will also be mentioned. Some other elliptic operators essentially connected with the geometry of M will be introduced. One of them is the so-called Ahlfors-Laplacian S*S acting on 1-forms. S is the Ahlfors’ operator which arises naturally in the theory of quasiconformal deformations of M. S*S is strongly influenced by the geometry of M. It behaves nicely both in the real and in the complex cases. Before passing to the operators some necessary information from the theory of real and complex geometry will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AHLFORS, L.V.: ‘Quasiconformal deformations and mappings in ℝn’, J. Analyse Math. 30 (1976), 74–97.

    Article  MathSciNet  MATH  Google Scholar 

  2. AHLFORS, L.V.: ‘A singular integral equation connected with quasiconformal mappings in space’, Enseign. Math. (2) 24 (1978), 225–236.

    MathSciNet  MATH  Google Scholar 

  3. BEALS, M., FEFFERMAN, C., GROSSMAN, R.: ‘Strictly pseudoconvex domains in Cn’, Bull. Amer. Math. Soc. (New Series), 8 (1983), 125–322.

    Article  MathSciNet  MATH  Google Scholar 

  4. BRANSON, T.P.: ‘Differential operators canonically associated to a conformai structure’, Math. Scand. 57 (1985), 295–345.

    MathSciNet  Google Scholar 

  5. BRANSON, ØRSTED, B.: ‘Conformai deformation of the heat operator’, preprint, Kobenhavns Universität, 1986.

    Google Scholar 

  6. GILKEY, P.B.: Invariance theory, the heat equation, and the Atiyahr-Singer index theorem, Publish or Perish 1984.

    Google Scholar 

  7. GRIFFITHS, P., HARRIS, J.: Principles of algebraic geometry, John Wiley, New York, 1978.

    MATH  Google Scholar 

  8. KOBAYASHI, S., NOMIZU, K.: Foundations of differential geometry II, Interscience Publ., New York-London-Sidney, 1969.

    MATH  Google Scholar 

  9. NARASIMHAN, R.: Analysis on real and complex manifolds, North Holland Publ. Company, Amsterdam 1968.

    Google Scholar 

  10. NEWLANDER, A., NIRENBERG, L.: ‘Complex analytic coordinates in almost complex manifolds’, Ann. Math. 65 (1954), 391–404.

    Article  MathSciNet  Google Scholar 

  11. NIRENBERG, L.: ‘A complex Frobenius theorem’, In Seminar Analytic Functions, 1 , Princeton Univ. Press, Princeton 1957, 172–189.

    Google Scholar 

  12. PALAIS, R.: Seminar on the Atiyah-Singer index theorem, Princeton NJ, Princeton Univ. Press 1965.

    MATH  Google Scholar 

  13. PIERZCHALSKI, A.: ‘On quasiconformal deformations of manifolds and hypersurfaces, Ber. Univ. Jyväskylä, Math. Inst. 28 (1984), 79–94.

    MathSciNet  MATH  Google Scholar 

  14. WARNER, F.: Foundations of differential geometry and Lie groups, Scott-Foresman, Glenview, Illinois, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kalina, J., Pierzchalski, A. (1989). Some Differential Operators in Real and Complex Geometry. In: Ławrynowicz, J. (eds) Deformations of Mathematical Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2643-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2643-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7693-7

  • Online ISBN: 978-94-009-2643-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics