Skip to main content

Studies on the Reaction Mechanism of Cyclodextrin Glycosyltransferases: Subsite Analysis

  • Conference paper
Proceedings of the Fourth International Symposium on Cyclodextrins

Part of the book series: Advances in Inclusion Science ((AIS,volume 5))

Abstract

Cyclization and disproportionation catalyzed by the cyclodextrin glycosyltransferase (EC 2.4.1.19) from Klebsiella pneumoniae M 5 al with various maltooligosaccha-rides and with maltodextrin DP 19 were studied to determine the rate parameters for each substrate.

Maltooctaose proved to be the smallest substrate for direct cyclization. The enzyme did not have higher affinity to maltodextrin DP 19, suggesting that the active site spans 8 glucose units. The rates of disproportionation markedly depended on the chain length of substrate. Disproportionation of maltotriose yielded maltose and maltotetraose, and of maltotetraose maltose and maltohexaose. As the initial products of cyclization from maltooctaose were maltose and cyclomaltohexaose, the catalytic site is likely to be situated between subsites 2 and 3. Magnitudes of subsite affinities were evaluated from the rate parameters of disproportionation. The highest values were found for subsites 2 and 3. The results point to a ping-pong-mechanism of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.C. Philips, Proc.Nat, Acad.Sci., 57(1967) 484–495

    Article  Google Scholar 

  2. F. Payan, R. Haser, M. Pierrot, J.P. Arber, B. Abadie, E. Duée, and G. Buisson, Acta Cryst., B26(1980) 416–421

    Google Scholar 

  3. Y. Matsuura, M. Kasanobi, W. Harada, and M. Kakudo, J.Biochem.(Tokyo), 95 (1984) 697–702

    CAS  Google Scholar 

  4. G. Buisson, E. Duée, R. Haser, and F. Payan, EMBO J., 6 (1987) 3909–3916

    PubMed  CAS  Google Scholar 

  5. K. Bock, and H. Pedersen, FEMS Symp., 31 (1986) 173–182

    CAS  Google Scholar 

  6. D. French, M.T.P.Int.Rev.Sci., Org.Chem.Ser.One, 5 (1975) 267–335

    CAS  Google Scholar 

  7. Y. Nitta, M. Mizushima, K. Hiromi, and S. Ono, J.Biochem. (Tokyo), 69 (1971) 567–576

    CAS  Google Scholar 

  8. K. Hiromi, Y. Nitta, C. Numata, and S. Ono, Biochim. Biophys. Acta, 302 (1973) 362–375

    PubMed  CAS  Google Scholar 

  9. J. F. Robyt, and D. French, J.Biol.Chem., 245 (1070) 3917–3927

    Google Scholar 

  10. J.D. Allen, and J.A. Thoma, Biochemistry, 17 (1978) 2338–2344

    Article  PubMed  CAS  Google Scholar 

  11. J.D. Allen, Methods Enzymol., 64 (1980) 248–277

    Article  PubMed  CAS  Google Scholar 

  12. R. Nakajima, T. Imanaka, and S. Aiba. Appl. Microbiol. Biotechnol., 23 (1986) 355–360

    Article  CAS  Google Scholar 

  13. F. Binder, O. HuBer, and A. Böck, Gene 47 (1986) 269–277

    Article  PubMed  CAS  Google Scholar 

  14. T. Sugimoto, M. Kubota, and S. Sakai (1986) UK Pat.Appl. GB 2 169 902 A

    Google Scholar 

  15. K. Kimara, S. Kataoba, Y. Ishii, T. Takano, and K. Yamane, J.Bacteriol., 169 (1987) 4399–4402

    Google Scholar 

  16. T. Hamamoto, T. Kaneko, and K. Horikoshi, Agric. Biol. Chem., 51 (1987) 2014–2022

    Google Scholar 

  17. H. Bender; Carbohydr. Res., 78 (1980) 133–145

    Article  PubMed  CAS  Google Scholar 

  18. H. Bender; Carbohydr. Res., 78 (1980) 147–162

    Article  PubMed  CAS  Google Scholar 

  19. H. Bender; Carbohydr. Res., 117 (1983) 1–11

    Article  PubMed  CAS  Google Scholar 

  20. H. Bender; Carbohydr. Res., 135 (1985) 291–302

    Article  PubMed  CAS  Google Scholar 

  21. H. Bender, and K. Wallenfels, Methods Enzymol., 8 (1966) 555–559

    Article  CAS  Google Scholar 

  22. A. Yazaki,(1986) Jpn. Kokai 86, 191, 690

    Google Scholar 

  23. H. Bender, Carbohydr. Res., 65 (1978) 85–97

    Article  CAS  Google Scholar 

  24. H. Bender, Anal.Biochem., 114(1981) 158–162

    Article  PubMed  CAS  Google Scholar 

  25. S. Kitahata, S. Okada, and T. Fukui, Agric.Biol.Chem. 42 (1978) 2369–2374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this paper

Cite this paper

Bender, H. (1988). Studies on the Reaction Mechanism of Cyclodextrin Glycosyltransferases: Subsite Analysis. In: Huber, O., Szejtli, J. (eds) Proceedings of the Fourth International Symposium on Cyclodextrins. Advances in Inclusion Science, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2637-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2637-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7690-6

  • Online ISBN: 978-94-009-2637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics