Skip to main content

Role of metallothionein in copper and zinc metabolism: special reference to inflammatory conditions

  • Chapter
Copper and Zinc in Inflammation

Part of the book series: Inflammation and Drug Therapy Series ((IDTH,volume 4))

Abstract

There is an increasing body of evidence which suggests that in mammals copper and zinc metabolism is subject to hormonal regulation. The specific hormones involved include those that control key pathways of intermediary metabolism, e.g. glucocorticoids, glucagon, insulin and catecholamines. Furthermore, hormonal factors associated with the host defence system, e.g. in-terleukin-1, have similar regulatory effects. A significant factor in the regulation of these metabolic effects is directly related to control of metallothionein gene expression. In this brief review we will describe aspects of the metabolism of both trace elements as related to metallothionein as a functional entity, and how this is influenced by inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kagi, JHR and Nordberg, M (eds)(1979). Metallothionein. (Basel: Birkhauser Verlag)

    Google Scholar 

  2. Cousins, RJ (1985). Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev, 65, 238–309

    PubMed  CAS  Google Scholar 

  3. Hamer, DH (1986). Metallothionein. Ann Rev Biochem, 55, 913–951

    Article  PubMed  CAS  Google Scholar 

  4. Dunn, MA, Blalock, TL and Cousins, RJ (1987). Metallothionein: minireview. Proc Soc Exp Biol Med, 185, 107–119

    PubMed  CAS  Google Scholar 

  5. Kagi, JHR and Kokima, Y (eds)(1987). Metallothionein-2. (Basel: Birkhauser Verlag), 702 pp

    Google Scholar 

  6. Winge, DR and Miklossy, KA (1982). Domain nature of metallothionein. J Biol Chem, 257, 3471–3476

    PubMed  CAS  Google Scholar 

  7. Nielson, KB and Winge, DR (1983). Order of metal binding in metallothionein. J Biol Chem, 258, 13063–13069

    PubMed  CAS  Google Scholar 

  8. Nettesheim, DG, Engeseth, HR and Otvos, JD (1985). Products of metal exchange reactions of metallothionein. Biochemistry, 24, 6744–6751

    Article  PubMed  CAS  Google Scholar 

  9. Nielson, KB, Atkin, CL and Winge, DR (1985). Distinct metal-binding configurations in metallothionein. J Biol Chem, 260, 5342–5350

    PubMed  CAS  Google Scholar 

  10. Gurd, FRN and Wilcox, PE (1956). Complex formation between metallic cations and proteins, peptides, and amino acids. In Anson, ML, Bailey, K and Edsall, JT (eds) Advances in Protein Chemistry, pp 311–427

    Google Scholar 

  11. Durnam, DM and Palmiter, RD (1981). Transcriptional regulation of the mouse me-tallothionein-I gene by heavy metals. J Biol Chem, 256, 5712–5716

    PubMed  CAS  Google Scholar 

  12. Sequin, C and Hamer, DH (1987). Regulation in vitro of metallothionein gene binding factors. Science, 235, 1383–1387

    Article  Google Scholar 

  13. Squibb, KS, Cousins, RJ and Feldman, SE (1977). Control of zinc-thionein synthesis in rat liver. Biochem J, 164, 223–228

    PubMed  CAS  Google Scholar 

  14. McCormick, CC, Menard, MP and Cousins, RJ (1981). Induction of hepatic metallothionein by feeding zinc to rats of depleted zinc status. Am J Physiol, 240, E414–E421

    PubMed  CAS  Google Scholar 

  15. Menard, MP, McCormick, CC and Cousins, RJ (1981). Regulation of intestinal metallothionein biosynthesis in rats by dietary zinc. J Nutr, 111, 1353–1361

    PubMed  CAS  Google Scholar 

  16. Blalock, TL, Dunn, MA and Cousins, RJ (1987). Sensitivity of native metallothionein promoters to dietary copper and zinc. Fed Proc, 46, 3313 abs.

    Google Scholar 

  17. Oh, SH, Deagan, JT, Whanger, PD and Weswig, PH (1978). Biological function of metallothionein. V. Its induction in rats by various stresses. Am J Physiol, 234, E282–E285

    PubMed  CAS  Google Scholar 

  18. Sobocinski, PZ, Canterbury, WJ, Jr, Knutsen, GL and Hauer, EC (1981). Effect of adrenalectomy on cadmium- and turpentine-induced hepatic synthesis of metallothionein and α2-macrofetoprotein in the rat. Inflammation, 5, 153–164

    Article  PubMed  CAS  Google Scholar 

  19. Swerdel, MR and Cousins, RJ (1984). Changes in rat liver metallothionein and metallothionein mRNA induced by isopropanol. Proc Soc Exp Biol Med, 175, 522–529

    PubMed  CAS  Google Scholar 

  20. Failla, ML and Cousins, RJ (1978). Zinc accumulation and metabolism in primary cultures of rat liver cells: regulation by glucocorticoids. Biochem Biophys Acta, 543, 293–304

    PubMed  CAS  Google Scholar 

  21. Pattison, SE and Cousins, RJ (1986). Kinetics of zinc uptake and exchange by primary cultures of rats hepatocytes. Am J Physiol, 250, E677–E685

    PubMed  CAS  Google Scholar 

  22. Etzel, KR, Shapiro, SG and Cousins, RJ (1979). Regulation of liver metallothionein and plasma zinc by the glucocorticoid dexamethasone. Biochem Biophys Res Commun, 89, 1120–1126

    Article  PubMed  CAS  Google Scholar 

  23. Hager, LJ and Palmiter, RD (1981). Transcriptional regulation of mouse liver me-tallothionein-I gene by glucocorticoids. Nature, 291, 340–342

    Article  PubMed  CAS  Google Scholar 

  24. Karin, M, Haslinger, A, Holtgreve, H et al. (1984a). Activation of a heterologous promoter in response to dexamethasone and cadmium by metallothionein gene 5′-flank-ing DNA. Cell, 36, 371–379

    Article  PubMed  CAS  Google Scholar 

  25. Henkin, RI, Foster, DM, Aamodt, RL and Berman, M (1984). Zinc metabolism in adrenocortical insufficiency: effects of carbohydrate active steroids. Metabolism, 33, 491–501

    Article  PubMed  CAS  Google Scholar 

  26. Bremner, I and Davies, NT (1975). The induction of metallothionein in rat liver by zinc injection and restriction of food intake. Biochem J, 149, 733–738

    PubMed  CAS  Google Scholar 

  27. Richards, MP and Cousins, RJ (1976). Metallothionein and its relationship to the metabolism of dietary zinc. J Nutr, 106, 1591–1599

    PubMed  CAS  Google Scholar 

  28. Cousins, RJ, Dunn, MA, Leinart, AS et al. (1986). Coordinate regulation of zinc metabolism and metallothionein gene expression in rats. Am J Physiol, 251, E688–E694

    PubMed  CAS  Google Scholar 

  29. Dunn, MA and Cousins, RJ (1987). Regulation of metallothionein gene transcriptional and kinetics of zinc metabolism by dibutyryl cAMP. Fed Proc, 46, 1644 abs.

    Google Scholar 

  30. Cousins, RJ and Coppen, DE (1987). Regulation of liver zinc metabolism and metallothionein by cAMP, glucagon and glucocorticoids and suppression of free radicals by zinc. In Kagi, JHR and Kojima, Y (eds) Metallothionein II. (Basel: Birkhauser Verlag), pp 545–553

    Google Scholar 

  31. Sobocinski, PZ, Canterbury, WJ, Jr, Mapes, CA and Dinterman, RE (1978). Involvement of hepatic metallothionein in hypozincemia associated with bacterial infection. Am J Physiol, 234, E399–E406

    PubMed  CAS  Google Scholar 

  32. Feldman, SI and Cousins, RJ (1976). Degradation of hepatic zinc-thionein following parenteral zinc administration. Biochem J, 160, 583–588

    PubMed  CAS  Google Scholar 

  33. Etzel, KR, Swerdel, MR, Swerdel, JN and Cousins, RJ (1982). Endotoxin-induced changes in copper and zinc metabolism in the Syrian hamster. J Nutr, 112, 2363–2373

    PubMed  CAS  Google Scholar 

  34. Sobocinski, PZ and Canterbury, WJ, Jr (1982). Hepatic metallothionein induction in inflammation. Ann NY Acad Sci, 210, 354–367

    Article  Google Scholar 

  35. Durnam, DM, Hoffman, JS, Quaife, CJ et al. (1984). Induction of mouse metallothio-nein-I mRNA by bacterial endotoxin in independent of metals and glucocorticoid hormones. Proc Natl Acad Sci, 81, 1053–1056

    Article  PubMed  CAS  Google Scholar 

  36. DiSilvestro, RA and Cousins, RJ (1984). Mediation of endotoxin-induced changes in metabolism in rats. Am J Physiol, 247, E436–E441

    PubMed  CAS  Google Scholar 

  37. Klasing, KC (1984). Effect of inflammatory agents and interleukin-1 on iron and zinc metabolism. Am J Physiol, 247, R901–R904

    PubMed  CAS  Google Scholar 

  38. Cousins, RJ, Blalock, TL, Barber, EF and Leinart, AS (1987). Regulation of liver metallothionein gene expression by interleukin-1. Fed Proc, 46, 3453 abs.

    Google Scholar 

  39. Flynn, A (1983). Effects of antigen stimulation and interleukin-1 on in vivo splenic zinc changes in the A/mouse. J Am Coll Nutr, 2, 205–213

    PubMed  CAS  Google Scholar 

  40. Karin, M, Imbra, RJ, Heguy, A and Wong, G (1985). Interleukin-1 regulates human metallothionein gene expression. Mol Cell Biol, 5, 2866–2869

    PubMed  CAS  Google Scholar 

  41. Gubler, U, Chua, AO, Stern, AS, Hellmann, CP, et al. (1986). Recombinant human interleukin la: purification and biological characterization. J Immunol, 136, 2492–2497

    PubMed  CAS  Google Scholar 

  42. Klasing, KC, Richards, MP, Darcey, SE and Laurin, DE (1987). Presence of acute phase changes in zinc, iron, and copper metabolism in turkey embryos. Proc Soc Exp Biol Med, 184, 7–13

    PubMed  CAS  Google Scholar 

  43. Williams, RJP (1984). Zinc: what is its role in biology? Endeavor, 8, 65–70

    Article  CAS  Google Scholar 

  44. Weiner, AL and Cousins, RJ (1983). Hormonally produced changes in ceruloplas-min synthesis and secretion in primary cultured rat hepatocytes-relationship to hepatic copper metabolism. Biochem J, 212, 297–304

    PubMed  CAS  Google Scholar 

  45. Weiner, AL and Cousins, RJ (1983). Differential regulation of copper and zinc metabolism in rat liver parenchymal cells in primary cultures. Proc Soc Exp Biol Med, 173, 486–494

    PubMed  CAS  Google Scholar 

  46. Scheckinger, T, Hartmann, HJ and Weser, U (1986). Copper transport from Cu(I)-thionein into apo-caeruloplasmin mediated by activated leucocytes. Biochem J, 240, 281–283

    Google Scholar 

  47. Cousins, RJ and Swerdel, MR (1985). Ceruloplasmin and metallothionein induction by zinc and 13-cis-retinoic acid in rats with adjuvant inflammation. Proc Soc Exp Biol Med, 179, 168–172

    PubMed  CAS  Google Scholar 

  48. Willson, RL (1977). Iron, zinc, free radicals and oxygen in tissue disorders and cancer control. In Iron Metabolism, pp 331–354. Ciba Foundation Symposium 51 (Amsterdam: Elsevier/Excerpta Medica/North Holland)

    Google Scholar 

  49. Halliwell, B and Gutteridge, JMC (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J, 219, 1–14

    PubMed  CAS  Google Scholar 

  50. Goldstein, IM, Kaplan, HB, Edelseon, HS and Weissman, G (1979). Ceruloplasmin: a scavenger of superoxide anion radicals. J Biol Chem, 254, 4040–4045

    PubMed  CAS  Google Scholar 

  51. Milanino, R, Conforti, A, Fracasso, ME, Franco, L, et al. (1979). Concerning the role of endogenous copper in the acute inflammatory process. Agents and Actions, 9, 581–588

    Article  PubMed  CAS  Google Scholar 

  52. Bakka, A, Endresen, L, Johnsen, ABS, et al. (1981). Resistance against cis-dichloro-diammineplatinum in cultured cells with a high content of metallothionein. Toxicol Appl Pharmacol, 61, 215–226

    Article  PubMed  CAS  Google Scholar 

  53. Butt, TR, Sternberg, EJ, Mirabelli, CK and Crooke, ST (1985). Regulation of metallothionein gene expression in mammalian cells by gold compounds. Mol Pharmacol, 29, 204–210

    Google Scholar 

  54. Bakka, A, Johnsen, AS, Endressen, L and Rugstad, HE (1982). Radioresistance in cells with high content of metallothionein. Experientia, (Basel), 38, 381–383

    Article  CAS  Google Scholar 

  55. Herrlich, P, Rahmsdor, H J, Angel, P, Luckehuh, C, et al. (1986). Signals and sequences involved in the UV and TPA dependent induction of genes. J Cell Biol, (S10C), 108, abs.

    Google Scholar 

  56. Shiraishi, N, Yamamoto, H, Takeda, Y, Kondoh, S, et al. (1986). Increased metallothionein content in rat liver and kidney following X-irradiation. Toxicol Appl Pharmacol, 85, 128–134

    Article  PubMed  CAS  Google Scholar 

  57. Schmitz, G, Minkel, DT, Gingrich, D and Shaw, CF III (1980). The binding of gold(I) to metallothionein. J Inorg Biochem, 12, 293–306

    Article  PubMed  CAS  Google Scholar 

  58. Sharma, RP and McQueen, EG (1982). The effect of zinc and copper pretreatment on the binding of gold(I) to hepatic and renal metallothioneins. Biochem Pharmacol, 31, 2153–2159

    Article  PubMed  CAS  Google Scholar 

  59. Patierno, SR, Costa, M, Lewis, VM and Peavy, DL (1983). Inhibition of LPS toxicity for macrophages by metallothionein-inducing agents. J Immunol, 130, 1924–1929

    PubMed  CAS  Google Scholar 

  60. Cunningham-Rundles, S (1984). Nutritional factors in immune response. In Malnutrition: Determinants and Consequences, pp 233–244. (New York: Liss)

    Google Scholar 

  61. Mapes, CA, Bailey, PT, Matson, CF, et al. (1978). In vitro and in vivo actions of zinc ion affecting cellular substances which influence host metabolic responses to inflammation. J Cell Physiol, 95, 115–124

    Article  PubMed  CAS  Google Scholar 

  62. Chvapil, M (1976). Effect of zinc on cells and biomembranes. Med Clin N Am, 60, 799–812

    PubMed  CAS  Google Scholar 

  63. Thornalley, PJ and Vasak, M (1985). Possible role for metallothionein in protection agains radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta, 827, 36–44

    Article  PubMed  CAS  Google Scholar 

  64. Thomas, JP, Bachowski, G J and Girotti, AW (1986). Inhibition of lipid peroxidation in cell membranes by zinc-metallothione. Fed Proc, 45, 1661, abs.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Grider, A., Cousins, R.J. (1989). Role of metallothionein in copper and zinc metabolism: special reference to inflammatory conditions. In: Milanino, R., Rainsford, K.D., Velo, G.P. (eds) Copper and Zinc in Inflammation. Inflammation and Drug Therapy Series, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2619-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2619-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7682-1

  • Online ISBN: 978-94-009-2619-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics