Skip to main content

Copper proteins and their role as antioxidants in human inflammatory conditions

  • Chapter
Copper and Zinc in Inflammation

Part of the book series: Inflammation and Drug Therapy Series ((IDTH,volume 4))

  • 62 Accesses

Abstract

Redox (oxidation-reduction) reactions are ubiquitous in virtually all biochemical processes associated with human metabolism, and metals such as Fe, Cu, Mo, Mn, and Co have an essential role. Fe and Cu as transition metals are particularly suited to catalyse redox reactions, mainly because they possess labile d-electron configurations and thus have a range of accessible oxidation states enabling them to transfer electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gutteridge, JMC (1984). Iron-EDTA stimulated phopholipid peroxidation: a reaction changing from alkoxyl to hydroxyl radical dependant initiation. Biochem J, 224, 697–701

    PubMed  CAS  Google Scholar 

  2. Gutteridge, JMC and Wilkins, S (1983). Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochem Biophys Acta, 759, 38–41

    PubMed  CAS  Google Scholar 

  3. Phelps, Ra, Neet, KE, Lynn, LT and Putman, FW (1961). The cupric ion catalysis of the cleavage of gamma globulin and other proteins by hydrogen peroxide. J Biol Chem, 96–105

    Google Scholar 

  4. Harrison, PM and Hoare, RJ (1980). Metals in Biochemistry. (New York: Chapman & Hall)

    Book  Google Scholar 

  5. Fridovich, I (1974). Superoxide dismutase. Adv Enzymol, 41, 35–48

    PubMed  CAS  Google Scholar 

  6. Roos, D (1977). Oxidative killing of microorganisms by phagocytic cells. Trends Biochem, 2, 61–64

    Article  CAS  Google Scholar 

  7. Fantone, JC and Ward PA (1975). Polymorphonuclear leukocyte mediated cell and tissue injury: oxygen metabolites and their relations to human disease. Human Pathol, 16, 973–977

    Article  Google Scholar 

  8. Ward, PA (1983). Role of toxic oxygen products from phagocytic cells in tissue injury. Adv Shock Res, 10, 27–34

    PubMed  CAS  Google Scholar 

  9. Babior, B (1984). Oxidants from phagocytes: agents of defense and destruction. Blood, 64, 959–966

    PubMed  CAS  Google Scholar 

  10. Segal, AW and Jones, OTG (1978). Novel cytochrome b system in phagocytic vacuoles of human phagocytes. Nature, 276, 515–517

    Article  PubMed  CAS  Google Scholar 

  11. Halliwell, B (1978). Superoxide dependent formation of hydroxyl radicals in the presence of iron chelates. Is it a mechanism for hydroxyl radical production in biochemistry systems? FEBS Lett, 92, 321–326

    Article  PubMed  CAS  Google Scholar 

  12. Halliwell, B and Gutteridge, JMC (1985). The importance of free radicals and catalytic metal ions in human diseases. Molec Aspects Med, 8, 89–193

    Article  CAS  Google Scholar 

  13. Lunec, J, Griffiths, HR and Blake, DR (1987). Oxygen radicals in inflammation. ISI Atlas of Science: Pharmacology, 1, 45–48

    CAS  Google Scholar 

  14. Pryor, WA (1978). The formation of free radicals and consequences of their reactions in vivo. Photochem Photobiol, 28, 787–801

    Article  PubMed  CAS  Google Scholar 

  15. Gutteridge, JMC (1986). Aspects to consider when detecting and measuring lipid peroxidation. Free Rad Res Comm, 1, 173–184

    Article  CAS  Google Scholar 

  16. Gutteridge, JMC (1984). Copper phenanthroline induced site specific oxygen radical damage to DNA. Detection of loosely bound trace copper in biological fluids. Biochem J, 218, 983–985.

    PubMed  CAS  Google Scholar 

  17. Gutteridge, JMC, Rowley, DA and Halliwell, B (1981). Superoxide dependent formation of hydroxyl radicals in the presence of iron salts. Detection of ‘free’ iron in biological systems by using bleomycin dependent degradation of DNA. Biochem J, 199, 263–265

    PubMed  CAS  Google Scholar 

  18. Gutteridge, JMC and Stocks, J (1981). Caeruloplasmin: physiological and pathological perspectives. CRC Cut Rev Clin Lab Sci, 14, 257–329

    Article  CAS  Google Scholar 

  19. Sterlieb, I, Sandson, JI, Morell, AG, Korotkin, E and Scheinberg, I (1969). Non caeruloplasmin copper in rheumatoid arthritis. Arthritis Rheum, 12, 458–472

    Article  Google Scholar 

  20. Lorber, A, Cutler, LS and Change, CC (1968). Serum copper levels in rheumatoid arthritis: relationship of elevated copper to protein alterations. Arthritis Rheum, 11, 65–72

    Article  PubMed  CAS  Google Scholar 

  21. Scudder, PR, Al-Timmini, D, McMurray, W et al. (1978). Serum copper and related variables in rheumatoid arthritis. Ann Rheum Dis, 37, 67–70

    Article  PubMed  CAS  Google Scholar 

  22. Youssef, AAR, Wood, B and Baron DN (1983). Serum copper: a marker of disease activity in rheumatoid arthritis. J Clin Pathol, 36, 14–17

    Article  PubMed  CAS  Google Scholar 

  23. Scudder, PR, McMurray, W, White, AG and Dormandy, TL (1978). Synovial fluid copper and related variables in rheumatoid and degenerative arthritis. Ann Rheum Dis, 37, 71–71

    Article  PubMed  CAS  Google Scholar 

  24. McMurray, W, Martin, WM, Scudder, P et al. (1975). Urinary copper excretion in rheumatoid arthritis. Ann Rheum Dis, 34, 340–345

    Article  PubMed  CAS  Google Scholar 

  25. Bonebrake, RA, McCall, JT, Hunder, GC and Polley, HL (1968). Copper complexes in synovial fluid. Arthritis Rheum, 11, 95–98

    Google Scholar 

  26. Lunec, J, Blake, DR, McCleary, S et al. (1985). Self-perpetuating mechanisms of immunoglobulin G aggregation in rheumatoid inflammation. J Clin Invest, 76, 2084–2090

    Article  PubMed  CAS  Google Scholar 

  27. Lunec, J and Hill, C (1984). Some immunological consequences of free radical production in rheumatoid arthritis. In Borg, W et al. (eds), Proceedings of the Third International Conference on Oxygen Radicals in Chemistry and Biology, pp. 939–945. (Berlin: de Gruyter)

    Chapter  Google Scholar 

  28. Niedermeier, W (1982). The effect of caeruloplasmin and iron on the L-ascorbic acid induced depolymerisation of hyaluronic acid. In Sorenson, JRJ (ed.), Inflammatory Diseases and Copper, pp. 223–229. (New York: Humana Press)

    Google Scholar 

  29. Gutteridge, JMC, Winyard, PG, Blake, DR et al. (1985). The behaviour of caeruloplasmin in stored human extracellular fluids in relation to ferroxidase activity, lipid peroxidation and phenanthroline detectable copper. Biochem J, 230, 517–523

    PubMed  CAS  Google Scholar 

  30. Winyard, PG, Pall, H, Lunec, J and Blake, DR (1987). Non-caeruloplasmin-boundcopper (phenanthroline copper) is not detectable in fresh serum or synovial fluid from patients with rheumatoid arthritis. Biochem J, 246

    Google Scholar 

  31. McCord, J (1974). Free radicals and inflammation. Protection of synovial fluid by superoxide dismutase. Science, 185, 529–531

    Article  PubMed  CAS  Google Scholar 

  32. Greenwald, RA and Moy, WW (1980). Effect of oxygen derived free radicals on hyaluronic acid. Arthritis Rheum, 23, 455–463

    Article  PubMed  CAS  Google Scholar 

  33. McCord, J and Fridovich, I (1969). Superoxide dismutaso: an enzymic function for erythrocuprein (Hemocuprein). J Biol Chem, 244, 6049–6055

    PubMed  CAS  Google Scholar 

  34. Bannister, JV (1973). The superoxide dismutase activity of human erythryocuprein. FEBS Lett, 32, 303–306

    Article  PubMed  CAS  Google Scholar 

  35. Gee, CA, Kittridge, KA and Wilson, RL (1985). Peroxy free radicals, enzymes and radidation damage: sensititation by oxygen and protection by superoxide dismutase and antioxidants. Br J Radiol, 58, 251–256

    Article  PubMed  CAS  Google Scholar 

  36. Cushing, LS, Decker, WE, Santos, FK et al. (1973). Orgotein therapy for inflammation in horses. Mod Vet Pract, 54, 17–20

    PubMed  CAS  Google Scholar 

  37. Lund-Olesen, K and Menander, KB (1974). Orgotein: a new anti-inflammatory metalloprotein drug. Curr Therap Res, 16,706–717

    CAS  Google Scholar 

  38. Milanino, R, Conforti, A, Franco, L et al. (1985). Copper and inflammation — a possible rationale for the pharmacological manipulation of inflammatory disorders. Agents and Actions, 16, 504–513

    Article  PubMed  CAS  Google Scholar 

  39. Andrews, FJ, Morris, CJ, Kondratowicz, G and Blake, DR (1987). Effect of iron chelation on inflammatory joint disease. Ann Rheum Dis, 46, 327–333

    Article  PubMed  CAS  Google Scholar 

  40. Rister, M, Bauermaster, IC, Gravert, U and Gladthe, F (1978). Superoxide dismutase deficiency in rheumatoid arthritis. Lancet, 1, 1094

    Article  PubMed  CAS  Google Scholar 

  41. Youssef, AR and Baron, D (1983). Leukocyte superoxide dismutase in rheumatoid arthritis. Ann Rheum Dis, 42, 558–562

    Article  PubMed  CAS  Google Scholar 

  42. Blake, DR, Hall, ND, Treby, DA et al. (1981). Protection against superoxide and hydrogen peroxide in synovial fluid from rheumatoid patients. Clin Sci, 64, 551–553

    Google Scholar 

  43. Igran, I, Kaneda, H, Horiuchi, S and Ono, S (1982). A remarkable increase in superoxide dismutase activity in synovial fluid of patients with rheumatoid arthritis. Clin Orthop Rel Res, 162, 282–287

    Google Scholar 

  44. Marklund, SL, Holme, E and Hellner, L (1982). Superoxide dismutase in extracellular fluids. Clin Chim Acta, 126, 41–51

    Article  PubMed  CAS  Google Scholar 

  45. Marklund, SL (1982). Human copper containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci USA, 79, 7634–7638

    Article  PubMed  CAS  Google Scholar 

  46. Marklund, SL, Bjelle, A and Elmquist, LG (1986). Superoxide dismutase isoenzymes of the synovial fluid in rheumatiod arthritis and in reactive arthritides. Ann Rheum Dis, 45, 847–885

    Article  PubMed  CAS  Google Scholar 

  47. Lunec, J, Wakefield, A, Brailsford, S and Blake, DR (1986). Free radical altered IgG and its interaction with rheumatoid factor. In Rice-Evans, C (ed.), Free Radicals, Cell Damage and Disease, pp. 241–261. (London: Richeliu Press)

    Google Scholar 

  48. Lunec, J and Blake, DR (1985). The determination of dehydroascorbic acid and ascorbic acid in the serum and synovial fluid of patients with rheumatoid arthritis (RA). Free Rad Res Comm, 1, 31–39

    Article  CAS  Google Scholar 

  49. Huber, CT and Frieden, E (1970). Substrate activation and the kinetics of ferroxi-dase. J Biol Chem, 245, 3973

    PubMed  CAS  Google Scholar 

  50. McKee, D and Freiden, E (1971). Binding of transition metal ions by caeruloplasmin (ferroxidase). Biochemistry, 10, 3880

    Article  PubMed  CAS  Google Scholar 

  51. Stocks, J, Gutteridge, JMC, Sharp, RJ and Dormandy, TL (1974). The inhibition of lipid autoxidation by human serum and its relationship to serum proteins and alpha tocopherol. Clin Sci, 47, 223–233

    CAS  Google Scholar 

  52. Al-Timmini, DJ and Dormandy, TL (1977). The inhibition of lipid autoxidation by human caeruloplasmin. Biochem J, 16, 283–288

    Google Scholar 

  53. Lovstad, RA (1980). The protective action of caeruloplasmin on FeIII stimulated lysis of rat erythrocytes. Int J Biochem, 13, 221–224

    Article  Google Scholar 

  54. Lunec, J, Wickens, DG, Graff, TL and Dormandy, TL (1982). In Sorenson, JRJ (ed.), Inflammatory Diseases and Copper, pp. 231–241. (New York: Humana Press)

    Google Scholar 

  55. Scheinberg, IH and Sternlieb, I (1960). Copper metabolism. Pharmacol Rev, 12, 355

    PubMed  CAS  Google Scholar 

  56. Rice, EW (1960). Correlation between serum copper caeruloplasmin activity and C-reactive protein. Clin Chim Acta, 5, 632

    Article  PubMed  CAS  Google Scholar 

  57. Gitlin, JD, Gitlin, JI and Gitlin, D (1977). Localisation of C-reactive protein in synovium of patients with rheumatoid arthritis. Arthritis Rheum, 20, 1491

    Article  PubMed  CAS  Google Scholar 

  58. Denko, CW (1979). Protective role of caeruloplasmin in inflammation. Agents and Actions, 9, 333–336

    Article  PubMed  CAS  Google Scholar 

  59. Winyard, PG, Lunec, J, Brailsford, S and Blake, DR (1984). Action of oxygen free radical generating systems upon the biological and immunological properties of caeruloplasmin. Int J Biochem, 16, 1273–1278

    Article  PubMed  CAS  Google Scholar 

  60. Sunderman, FW and Nomoto, S (1970). Measurement of human serum caeruloplasmin by its p-phenylenediamine oxidase activity. Clin Chem, 16, 903–910

    PubMed  CAS  Google Scholar 

  61. Buffone, CJ, Bret, EM, Lewis, SA et al. (1979). Limitations of immunochemical measurement of caeruloplasmin. Clin Chem, 25, 749–751

    PubMed  CAS  Google Scholar 

  62. Conforti, A, Franco, L, Milanino, R et al. (1982). Copper and caeruloplasmin activity in rheumatoid arthritis. Adv Inflam Res, 3, 237–244

    CAS  Google Scholar 

  63. Goldstein, IM, Kaplan, HB, Edelsson, HS and Wiessmann, G (1979). Caeruloplasmin: a scavenger of superoxide radical anions. J Biol Chem, 254, 4040–4045

    PubMed  CAS  Google Scholar 

  64. Lunec, J and Dormandy, TL (1979). Fluorescent lipid peroxidation products in synovial fluid. Clin Sci, 56, 53–59

    PubMed  CAS  Google Scholar 

  65. Lunec, J, Halloran, SP, White, AG and Dormandy, TL (1981). Free radical oxidation (peroxidation) products in serum and synovial fluid in rheumatoid arthritis. J Rheumatol, 8, 233–245

    PubMed  CAS  Google Scholar 

  66. Carp, H, Miller, F, Hoidal, JR and Janodd, A (1982). Potential mechanism of emphysema: α1-proteinase inhibitor recovered from the lungs of cigarette smokers contains oxidised methionine and has decreased elastase inhibitory capacity. Proc Natl Acad Sci USA, 79, 2041–2045

    Article  PubMed  CAS  Google Scholar 

  67. Cochrane, CG, Spragg, R and Revak, SD (1983). Pathogenesis of the adult respiratory distress syndrome. Evidence of oxidant activity in broncho-alveolar lavage fluid. J Clin Invest, 71, 754–761

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lunec, J. (1989). Copper proteins and their role as antioxidants in human inflammatory conditions. In: Milanino, R., Rainsford, K.D., Velo, G.P. (eds) Copper and Zinc in Inflammation. Inflammation and Drug Therapy Series, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2619-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2619-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7682-1

  • Online ISBN: 978-94-009-2619-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics