Alternative life-history styles in Simuliidae (Insecta, Diptera)

  • Ferdinand C. de Moor
Part of the Perspectives in vertebrate science book series (PIVS, volume 6)


Blackflies, which are worldwide in distribution, are characterized by their extreme morphological homogeneity and the reliance of their subimaginal stages on an existence in running water. Life-history characteristics in Simuliidae follow either an altricial or precocial pattern, but in many species combinations of both exist. Life-history attributes in 12 simuliid species were selected and identified as following a generalised or specialised pattern. Mating behaviour ranges from the incidental contact of males and females near their emergence sites to the highly specialised formation of male mating swarms. The size and number of eggs in Simuliidae ranges from a large number of small eggs and several gonotrophic cycles in the more altricial, to a low number of large eggs and a single gonotrophic cycle in the more precocial life histories. Studies on northern hemisphere Simuliidae have revealed that the genera considered to be more primitive phylogenetically are usually univoltine, whereas the more advanced species of Simulium exhibit bi- and multivoltine life histories. In the higher, colder latitudes specialised reproductive life styles and autogeny predominate. In the temperate latitudes generalist life-history attributes are more common. Temperature stability and predictability have played a major role in the development of various life-history styles in Simuliidae. Egg scattering and larval drifting behaviour enable Simulium chutteri, a mammalophilic multivoltine species, to disperse rapidly into newly inundated habitats. A longer-lived winter generation with larger semaphoronts and autogenous egg development is, however, indicative of an alternative precocial life style. The more advanced genus Simulium appears to be more predisposed to forming insipid or sibling species complexes than the more primitive but specialised genera; most of the ‘plague’ simuliid species belong to the former category. Considering that both precocial and altricial life-history styles for a number of attributes can be found in a single species, it would appear that such characters can be coopted to cope with a changing environment. Life-history alternatives can thus be considered as exaptations rather than adaptations (Gould & Vrba 1982).

Key words

Thermal regimes Reproductive behaviour Autogeny Habitat suitability Voltinism Coloniser species Evolution Environmental predictability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, P.H. & K.C. Kim. 1984. Ecological characterization of two sibling species, IIIL-1 and IS-7, in the Simulium vittatum complex (Diptera: Simuliidae). Can. J. Zool. 62: 1308–1315.CrossRefGoogle Scholar
  2. Adler, P.H. & K.C. Kim. 1986. The blackflies of Pennsylvania (Simuliidae, Diptera). Bionomics, taxonomy, distribution. The Pennsylvania State University Bulletin 856: 1–88.Google Scholar
  3. Balon, E.K. 1989. The epigenetic mechanism of bifurcation and alternative life-history styles, pp. 467–501. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Perspectives in Vertebrate Science 6, Kluwer Academic Publishers, Dordrecht.Google Scholar
  4. Begeman, G.J. 1980a. Laboratory studies on the biology of Simulium nigritarse Coquillet and Simulium adersi Pomeroy (Diptera: Simuliidae). Onderstepoort J. vet. Res. 47: 203–211.Google Scholar
  5. Begeman, G.J. 1980b. The bionomics of South African Simuliidae species. Proceedings of the Third Entomological Congress, Entomological Society of southern Africa, Pretoria: 26–27.Google Scholar
  6. Borkent, A. & D.M. Wood. 1986. The first and second larval instars and the egg of Parasimulium stonei Peterson (Diptera: Simuliidae). Proc. entomol. Soc. Wash. 88: 287–296.Google Scholar
  7. Butler, G.B. 1984. Life histories of aquatic insects, pp.24–55. In: V.H. Resh & D.M. Rosenberg (ed.) The Ecology of Aquatic Insects, Praeger, New York.Google Scholar
  8. Calow, P. 1978. Life cycles. An evolutionary approach to the physiology of reproduction, development, and ageing. Chapman & Hall, London, 164 pp.Google Scholar
  9. Chutter, F.M. 1970. A preliminary study of factors influencing the number of oocytes present in newly emerged blackflies (Diptera: Simuliidae) in Ontario. Can. J. Zool. 48: 1389–1400.CrossRefGoogle Scholar
  10. Chutter, F.M. 1972. Notes on the biology of South African Simuliidae particularly Simulium (Eusimulium) nigritarse Coquillet. Newsl. limnol. Soc. S. Afr. 18: 10–18.Google Scholar
  11. Colbo, M.H. & D.E. Moorhouse. 1974. The survival of the eggs of Austrosimulium pestilens Mack. & Mack. (Diptera, Simuliidae). Bull, entom. Res. 64: 629–632.CrossRefGoogle Scholar
  12. Colbo, M.H. & R.S. Wotton. 1981. Preimaginal blackfly bionomics, pp. 209–226. In: M. Laird (ed.) Blackflies-the Future for Biological Methods in Integrated Control, Academic Press, London.Google Scholar
  13. Courtney, G.W. 1986. Discovery of the immature stages of Parasimulium crosskeyi Peterson (Diptera: Simuliidae), with a discussion of a unique black fly habitat. Proc. entomol. Soc. Wash. 88: 280–286.Google Scholar
  14. Craig, D.A. 1974. The labrum and cephalic fans of larval Simuliidae (Diptera: Nematocera). Can. J. Zool. 52: 133–159.CrossRefGoogle Scholar
  15. Crosskey, R.W. 1969. A re-classification of the Simuliidae of Africa and its islands. Bull. Brit. Mus. (Nat. Hist.) Entomol. 14: 1–195.Google Scholar
  16. Crosskey, R.W. 1981a. Simuliid taxonomy — the contemporary scene, pp. 3–18. In: M. Laird (ed.) Blackflies-the Future for Biological Methods in Integrated Control, Academic Press, London.Google Scholar
  17. Crosskey, R.W. 1981b. Geographical distribution of Simuliidae. pp. 57–68. In: M. Laird (ed.) Blackflies-the Future for Biological Methods in Integrated Control, Academic Press, London.Google Scholar
  18. Crosskey, R.W. 1985. The authorship, dating, and application of suprageneric names in the Simuliidae (Diptera). Entomol. mon. Mag. 121: 167–178.Google Scholar
  19. Davies, D.M. & B.V. Peterson. 1956. Observations on the mating, feeding, ovarian development, and oviposition of adult black flies (Simuliidae, Diptera). Can. J. Zool. 34: 615–655.CrossRefGoogle Scholar
  20. Davies, D.M., B.V. Peterson & D.M. Wood. 1962. The black flies (Diptera: Simuliidae) of Ontario. Part 1. Adult identification and distribution with descriptions of six new species. Proc. entomol. Soc. Ont. 92: 71–154.Google Scholar
  21. Davies, L. 1954. Observations on Prosimulium ursinum Edw. at Holandsfjord, Norway. Oikos 5: 94–98.CrossRefGoogle Scholar
  22. Davies, L. 1965. The structure of certain atypical Simuliidae (Diptera) in relation to evolution within the family, and the erection of a new genus for the Crozet Island black-fly. Proc. Linn. Soc. Lond. 176: 159–180.CrossRefGoogle Scholar
  23. Davies, L. 1974. Evolution of larval head fans in Simuliidae as inferred from the structure and biology of Crozetia crozetensis (Womersley) compared with other genera. Zool. J. Linn. Soc. 55: 193–224.CrossRefGoogle Scholar
  24. Downes, J.A. 1965. Adaptations of insects in the arctic. Ann. Rev. Entomol. 10: 257–274.CrossRefGoogle Scholar
  25. Downes, J.A. 1969. The swarming and mating flight of Diptera. Ann. Rev. Entomol. 14: 271–298.CrossRefGoogle Scholar
  26. Fabian, B.C. 1985. Ontogenetic explorations into the nature of evolutionary change, pp. 77–85. In: E.S. Vrba (ed.) Species and Speciation. Transvaal Museum Monograph no. 4, Transvaal Museum, Pretoria.Google Scholar
  27. Fink, T.J. 1983. A further note on the use of the terms instar, stadium and stage. Ann. entom. Soc. Amer. 76: 316–318.Google Scholar
  28. Fredeen, F.J.H. 1985. The black flies (Diptera: Simuliidae) of Saskatchewan. Saskatchewan Culture and Recreation, Museum of Natural History Contributions 8: 1–72.Google Scholar
  29. Freeman, P. & B. de Meillon. 1953. Simuliidae of the Ethiopian Region. Brit. Mus. (Nat. Hist.), London. 224 pp.Google Scholar
  30. Gislason, G.M. 1985. The life cycle and production of Simulium vittatum Zett. in the River Laxa, north-east Iceland. Verh. Internat. Verein. Limnol. 22: 3281–3287.Google Scholar
  31. Gould, S.J. & E.S. Vrba. 1982. Exaptation — a missing term in the science of form. Paleobiology 8: 4–15.Google Scholar
  32. Hinton, H.E. 1958. The pupa of the fly Simulium feeds and spins its own cocoon. Entomologist’s mon. Mag. 94: 14–16.Google Scholar
  33. Holm, E. 1985. The evolution of generalist and specialist species, pp. 87–93. In: E.S. Vrba (ed.) Species and Speciation, Transvaal Museum Monograph no. 4, Pretoria.Google Scholar
  34. Hunter, D.M. 1978. The sequence of events of outbreaks of Austrosimulium pestilens Mackerras & Mackerras (Diptera: Simuliidae). Bull, entom. Res. 68: 307–312.CrossRefGoogle Scholar
  35. Hunter, D.M. 1979. Swarming, mating and resting behaviour of three species of black fly (Diptera: Simuliidae). J. Aust. entom. Soc. 18: 1–6.CrossRefGoogle Scholar
  36. Hunter, D.M. & D.E. Moorhouse. 1976. Comparative bionomics of adult Austrosimulium pestilens Mackerras & Mackerras and A. bancrofti (Taylor) (Diptera, Simuliidae). Bull. entom. Res. 66: 453–467.CrossRefGoogle Scholar
  37. Moor, F.C. de. 1982a. Determination of the number of instars and size variation in the larvae and pupae of Simulium chutteri Lewis 1965 (Diptera: Simuliidae) and some possible bionomical implications. Can. J. Zool. 60: 1374–1382.CrossRefGoogle Scholar
  38. Moor, F.C. de. 1982b. A community of Simulium species in the Vaal River near Warrenton. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, 2 vols. 317 pp.Google Scholar
  39. Moor, F.C. de. 1986. Invertebrates of the Lower Vaal River, with emphasis on the Simuliidae. pp. 135–142. In: B.R. Davies & K.F. Walker (ed.) The Ecology of River Systems, Monographiae Biologicae 60, W. Junk, The Hague.Google Scholar
  40. Moor, F.C. de, F.M. Chutter & I.J. de Moor. 1986. Drift behaviour and microhabitat selection in the preimaginal stages of Simulium chutteri (Diptera Simuliidae). Hydrobiologia 133: 143–154.CrossRefGoogle Scholar
  41. Muirhead-Thomsom, R.C. 1956. Communal oviposition in Simulium damnosum Theobald (Diptera, Simuliidae). Nature (Lond.) 178: 1297–1299.CrossRefGoogle Scholar
  42. Obeng, L.E. 1967. Oviposition and breeding habits of the Simuliidae in relation to control practices. Proc. Ghana Academy of Sciences 5: 45–64.Google Scholar
  43. Oliver, D.R. 1979. Contribution of life history information to taxonomy of aquatic insects. J. Fish. Res. Board Can. 36: 318–321.CrossRefGoogle Scholar
  44. Paterson, H.E.H. 1985. The recognition concept of species, pp. 21–29. In: E.S. Vrba (ed.) Species and Speciation, Transvaal Museum Monograph no. 4, Pretoria.Google Scholar
  45. Peterson, B.V. 1962. Observations on mating swarms of Simulium venustum Say and S. vittatum Zetterstedt (Dipt.: Simuliidae). Proc. entom. Soc. Ont. 92: 188–190.Google Scholar
  46. Peterson, B.V. 1970. The Prosimulium of Canada and Alaska (Diptera: Simuliidae). Mem. entom. Soc. Can. 69: 1–216.CrossRefGoogle Scholar
  47. Peterson, B.V. & G.W. Courtney. 1985. First description of the female of Parasimulium stonei Peterson (Diptera: Simuliidae), with notes and a discussion on collection sites. Proc. entomol. Soc. Wash. 87: 656–661.Google Scholar
  48. Pianka, E.R. 1974. Evolutionary ecology. Harper & Row, New York. 356 pp.Google Scholar
  49. Raybould, J.N. & J. Grunewald. 1975. Present progress towards the laboratory colonization of African Simuliidae (Dipt.). Tropenmed. Parasit. 26: 155–168.Google Scholar
  50. Raybould, J.N. & G.B. White. 1979. The distribution, bionomics and control of onchocerciasis vectors (Diptera: Simuliidae) in eastern Africa and the Yemen. Tropenmed. Parasit. 30: 505–547.Google Scholar
  51. Rothfels, K.H. 1979. Cytotaxonomy of black flies (Simuliidae). Ann. Rev. Entomol. 24: 507–539.CrossRefGoogle Scholar
  52. Rubtsov, L.A. 1974. On the evolution, phylogeny and classification of the blackfly family (Simuliidae, Diptera). Trudy zool. Inst. Leningr. 53: 230–282. (In Russian).Google Scholar
  53. Southwood, T.R.E. 1977. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46: 337–365.CrossRefGoogle Scholar
  54. Vannote, R.L. & B. W. Sweeney. 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Amer. Nat. 115: 667–695.CrossRefGoogle Scholar
  55. Wanson, M. & C. Henrard. 1945. Habitat et compartement larvaire du Simulium damnosum Theobald. Reel. Trav. Sci. med. Congo, beige. 4: 113–122.Google Scholar
  56. Ward, J.V. 1985. Thermal characteristics of running waters. Hydrobiologia 125: 31–46.CrossRefGoogle Scholar
  57. Ward, J.V. & J. A. Stanford. 1982. Thermal responses in the evolutionary ecology of aquatic insects. Ann. Rev. Entomol. 27: 97–117.CrossRefGoogle Scholar
  58. Waters, T.F. 1979. Benthic life histories: summary and future needs. J. Fish. Res. Board Can. 36: 342–345.CrossRefGoogle Scholar
  59. Wenk, P. 1981. Bionomics of adult blackflies. pp. 259–279. In: M. Laird (ed.) Blackfliesthe Future for Biological Methods in Integrated Control, Academic Press, London.Google Scholar
  60. Wood, D.M. 1978. Taxonomy of the Nearctic species of Twinnia and Gymnopais (Diptera: Simuliidae) and a discussion of the ancestry of the Simuliidae. Can. Entom. 110: 1297–1337.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Dordrecht 1989

Authors and Affiliations

  • Ferdinand C. de Moor
    • 1
  1. 1.Albany MuseumGrahamstownSouth Africa

Personalised recommendations