Skip to main content

Some aspects of iron cycling in maritime antarctic lakes

  • Chapter
High Latitude Limnology

Part of the book series: Developments in Hydrobiology ((DIHY,volume 49))

Abstract

Iron occurs in extremely high concentrations in certain maritime Antarctic freshwater lakes which seasonally develop an anoxic zone. In oligotrophic Sombre Lake the data show that Fe(II) precipitates as Fe(III) oxyhydroxides which bind phosphorus and return it to the sediments. In nutrient-enriched Amos Lake, significant quantities of sulphide are also produced and this binds a proportion of the released Fe(II) so reducing the ratio of total iron to phosphorus at the redox boundary where the oxyhydroxides are formed. A proportion of the sediment-released phosphorus therefore reaches the upper waters of this lake (unlike in Sombre Lake) and provides the initial nutrient source for under-ice phytoplankton development in spring. Iron-reducing bacteria have been isolated, from Sombre Lake sediments, which apparently utilise the abundant Fe(III) oxyhydroxides. From thermodynamic considerations (assuming Fe(III) is not limiting) these should outcompete sulphate reducers and methanogens (both previously reported from Sombre and Amos Lakes) and could therefore constitute an important component of the anaerobic mineralisation of organic carbon in such lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brannon, J. M., D. Gunnison, R. M. Smart & R. L. Chen, 1984. Effects of added organic matter on iron and manganese redox systems in sediment. Geomicrobiol. J. 3:319–341.

    Article  CAS  Google Scholar 

  • Balashova, V. V. & G. A. Zavarzin, 1980. Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48:635–639.

    Google Scholar 

  • Campbell, P. & T. Torgersen, 1980. Maintenance of iron meromixis by iron redeposition in a rapidly flushed monimolimnion. Can. J. Fish. Aquat. Sci. 37:1303–1313.

    Article  CAS  Google Scholar 

  • Coey, J. M. D., D. W. Schindler & F. Weber, 1974. Iron compounds in lake sediments. Can. J. Earth Sci. 11:1489–1493.

    Article  CAS  Google Scholar 

  • Cunningham, C. C. & W. Davison, 1980. An opto-electronic sediment detector and its use in the chemical microprofiling of lakes. Freshwater Biol. 10:413–418.

    Article  Google Scholar 

  • Davison, W., 1977a. Sampling and handling procedures for polarographic measurements in hypolimnetic water. Freshwater Biol. 7:393–401.

    Article  CAS  Google Scholar 

  • Davison, W., 1977b. The polarographic measurements of O2, Fe2+, Mn2+ and S2- in hypolimnetic water. Limnol and Oceanogr. 22(4):743–753.

    Article  Google Scholar 

  • Davison, W., 1980. A critical comparison of the measured solubilities of ferrous sulphide in natural waters. Geochim. Cosmochim. Acta. 44:803–808.

    Article  CAS  Google Scholar 

  • Davison, W. & B. J. Finlay, 1986. Ferrous iron and phototrophy as alternative sinks for sulphide in the anoxic hypolimnia of two adjacent lakes. J. Ecol. 74:663–673.

    Article  CAS  Google Scholar 

  • Davison, W. & S. J. Heaney, 1978. Ferrous-iron-sulphide interactions in anoxic hypolimnetic waters. Limnol. Oceanogr. 23:1194–1200.

    Article  CAS  Google Scholar 

  • Davison, W., S.J. Heaney, J. F. Talling & E. Rigg, 1980. Seasonal transformations and movements of iron in a productive English lake with deep water anoxia. Schweiz. z. Hydrol. 42:196–224.

    Article  CAS  Google Scholar 

  • Davison, W. & G. Seed, 1983. The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim. Cosmochim. Acta. 47:67–79.

    Article  CAS  Google Scholar 

  • Eisenreich, S. J., R. T. Bannerman & D. E. Armstrong, 1975. A simplified phosphorus analysis technique. Environ. Letts. 9(1):43–53.

    Article  CAS  Google Scholar 

  • Ellis-Evans, J. C., 1981a. Freshwater microbiology in the Antarctic I-Microbial numbers and activity in oligotrophic Moss Lake. Brit. Antarct. Surv. Bull. 54:85–104.

    Google Scholar 

  • Ellis-Evans, J. C., 1981b. Freshwater microbiology at Signy Island, South Orkney Islands, Antarctica. PhD thesis (CNAA) 283 pp.

    Google Scholar 

  • Ellis-Evans, J. C., 1982. Seasonal microbial activity in Antarctic freshwater lake sediments. Polar Biol. 1:129–140.

    Article  Google Scholar 

  • Ellis-Evans, J. C., 1984. Methane in maritime Antarctic freshwater lakes. Polar Biol. 3:63–71.

    Article  CAS  Google Scholar 

  • Ellis-Evans, J. C., 1985. Decomposition processes in maritime Antarctic lakes. In Seigfreid, W. R., P. R. Condy and R. M. Laws (eds.) Antarctic Nutrient Cycles and Food Webs. Springer Verlag:253–260.

    Google Scholar 

  • Ellis-Evans, J. C. & M. W. Sanders, 1988. Observations on microbial activity in a seasonally anoxie, nutrient-enriched maritime Antarctic lake. Polar Biol. 8:311–318.

    Article  Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman & V. Maynard, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta. 43:1075–1090.

    Article  CAS  Google Scholar 

  • Gallagher, J. B., 1985. The influence of iron and manganese on nutrient cycling in shallow freshwater Antarctic lakes. In Seigfried, W. R. & R. M. Laws (eds.) Antarctic Nutrient Cycles and Food Webs, Springer Verlag:234–237.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for physical and chemical analysis of fresh waters. IBP Handbook No. 8 (2nd ed.). Blackwell:89–91.

    Google Scholar 

  • Hawes, I., 1985. Factors controlling phytoplankton populations in maritime Antaretie lakes. In Seigfreid, W. R., P. R. Condy & R. M. Laws (eds.) Antarctic Nutrient Cycles and Food Webs. Springer Verlag:245–252.

    Google Scholar 

  • Herbert, R. A. & C. R. Bell, 1973. Nutrient cycling in freshwater lakes on Signy Island, South Orkney Islands. Brit. Antarct. Surv. Bull. 37:15–20.

    Google Scholar 

  • Heywood, R. B., 1985. Antarctic inland waters. In Laws, R. M. (ed.) Antarctic Ecology Vol 1 Academic Press:279–343.

    Google Scholar 

  • Jones, J. G., 1983. A note on the isolation and enumeration of bacteria which deposit and reduce ferric iron. J. Appl. Bact. 54:305–310.

    Google Scholar 

  • Jones, J. G., 1985. Microbes and microbial processes in sediments. Phil. Trans. R. Soc. Lond. A 315:3–17.

    Article  CAS  Google Scholar 

  • Jones, J. G., S. Gardner & B. M. Simon, 1983. Bacterial reduction of ferric iron in a stratified eutrophic lake. J. Gen. Microbiol. 129:131–139.

    CAS  Google Scholar 

  • Jones, J. G., S. Gardner & B. M. Simon, 1984. Reduction of ferric iron by heterotrophic bacteria in lake sediments. J Gen. Microbiol. 130:45–51.

    CAS  Google Scholar 

  • Latham, M. J. & M. J. Wolin, 1978. Use of aserum bottle technique to study interactions between strict anaerobes in mixed culture. In Lovelock, D. W. & R. Davies (eds.) Techniques for the Study of Mixed Populations. SAB Technical Series No. 11 Academic Press:113–124.

    Google Scholar 

  • Lovley, D. R. & M. J. Klug, 1986. Model for the distribution of methane production and sulphate reduction in freshwater sediments. Geochim. Cosmochim. Acta. 50:11–18.

    Article  CAS  Google Scholar 

  • Lovley, D. R. & E. J. P. Philips, 1986a. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51(4):683–689.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R. & E. J. P. Philips, 1986b. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 52(4):751–757.

    PubMed  CAS  Google Scholar 

  • Mayer, L. M., F. P. Liotta & S. A. Norton, 1982. Hypolimnetic redox and phosphorus cycling in hypereutrophic Lake Sebasticook, Maine. Water Res. 16:1189–1196.

    Article  CAS  Google Scholar 

  • Methods for the Examination of Water and Associated Materials, 1983. Iron in raw and potable waters by atomic absorption spectrophotometry. HMSO, London, 20 pp.

    Google Scholar 

  • Molongoski, J.I. & M. J. Klug, 1980. Quantification and characterization of sedimenting particulate organic matter in a shallow hypereutrophic lake. Freshwat. Biol. 10:497–506.

    Article  CAS  Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. I and II. J. Ecol. 29:280–329.

    CAS  Google Scholar 

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. III and IV. J. Ecol. 30:147–201.

    CAS  Google Scholar 

  • Munch, J. C. & J. C. G. Ottow, 1982. Effect of cell contact and iron(III) oxide form on bacterial iron reduction. Zeit. Pflanz., Dung. Boden. 145:66–77.

    Article  CAS  Google Scholar 

  • Ottow, J. C. G. & J. C. Munch, 1978. Mechanisms of reductive transformations in the anaerobic microenvironment of hydromorphic soils. In Krumbein, W. E. (ed.) Environmental Biogeochemistry and Geomicrobiology Vol2. Ann Arbor:483–491.

    Google Scholar 

  • Sorensen, J., 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with nitrate and sulphate. Appl. Environ. Microbiol. 43:319–324.

    PubMed  CAS  Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry, 2nd Edition. Wiley 780 pp.

    Google Scholar 

  • Tabatabai, M. A., 1974. Determination of sulphate in water samples. Sulphur Inst. J. 10:11–13.

    CAS  Google Scholar 

  • Talling, J. F., 1973. The application of some electrochemical methods to the measurement of photosynthesis and respiration in freshwater. Freshwater Biol. 3:335–362.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ellis-Evans, J.C., Lemon, E.C.G. (1989). Some aspects of iron cycling in maritime antarctic lakes. In: Vincent, W.F., Ellis-Evans, J.C. (eds) High Latitude Limnology. Developments in Hydrobiology, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2603-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2603-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7674-6

  • Online ISBN: 978-94-009-2603-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics