Skip to main content

Geochemical processes in the Lake Fryxell Basin (Victoria Land, Antarctica)

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 49))

Abstract

Major ion, nutrient, transition metal, and cadmium concentrations are presented for nine meltwater streams flowing into Lake Fryxell, a permanently stratified lake with an anoxic hypolimnion in Taylor Valley, Antarctica. For the major ions, stream compositions are considered in terms of dissolution of marine-derived salts and chemical weathering of local rocks. Although Lake Fryxell has undergone significant evaporative concentration, only calcite, of the simple salts, is predicted to precipitate. Geochemical budgets indicate, however, that large quantities of K, Mg, and SO4 have also been removed from the lake. Reverse weathering may be an important sink for K and Mg, although magnesium removal with calcium carbonate phases is also likely. Assuming constancy of composition over recent geologic time, all of the salts in the Fryxell water column could have been delivered under present flows in about three thousand years (chloride age).

Comparison of nutrient concentrations in these meltwater streamsn with other flowing waters in the world reveals that the Frywell streams are strikingly deficient in NO3-N but not PO4-P. The apparent nitrogen deficiency in Lake Frywell itself can be attributed to the low annual stream loadings of this nutrient.

Stream concentrations and loadings are also presented for Mn, Fe, Co, Ni, Cu, and Cd. “Dissolved” metal concentrations correlate roughly with average crustal abundances, suggesting that chemical weathering is the major source for these elements. Vertical metal profIles within Lake Fryxell itself appear to be governed by the formation of insoluble sulfide phases, or, in the case of Mn, by MnHPO4. However, dissolved nickel levels in sulfide-bearing waters are much higher than can be explained in terms of metal-sulfide equilibria, and we suspect that significant organic complexing of this metal is occurring in the deeper waters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angino, E. E., K. B. Armitage & J. C. Tash, 1962. Chemical stratification in Lake Fryxell, Victorialand, Antarctica. Science 138:34–36.

    Article  PubMed  CAS  Google Scholar 

  • Ball, J. W.,E. A. Jenne & D. H. Nordstrom, 1979. WATEQ2 — a computerized chemical model for trace and major element speciation and mineral equilibria in natural waters. In E. A. Jenne (ed.), Chemical modeling in aqueous systems. Am. Chem. Soc., Washington, DC:815–836.

    Google Scholar 

  • Canfield, D. E. & W. J. Green, 1985. The cycling of nutrients in a closed-basin Antarctic lake: Lake Vanda. Biogeochemistry 1:233–256.

    Article  CAS  Google Scholar 

  • Chinn, T. J. H., 1981. Hydrology and climate in the Ross Sea area. J. Roy. Soc. New Zealand 11:373–386.

    Google Scholar 

  • Claridge, G. G. C. & I. B. Campbell, 1977. The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Science 123:377–384.

    Article  CAS  Google Scholar 

  • Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Ocean. 14:454–458.

    Article  CAS  Google Scholar 

  • Danielson, L. G. & S. Westerlund, 1978. An improved metal extraction procedure for the determination of trace metals in seawater by atomic absorption spectrometry with electrothermal atomization. Anal. Chim. Acta 98:47–57.

    Article  Google Scholar 

  • Downes, M. T., Howard-Williams & W. F. Vincent, 1986. Sources of organic nitrogen, phosphorus, and carbon in Antarctic streams. Hydrobiologia 134:215–225.

    Article  CAS  Google Scholar 

  • Emerson, S., L. Jacobs & B. Tebo, 1983. The behavior of trace metals in marine anoxic waters: Solubilities at the oxygen-hydrogen sulfide interface. In C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton & E. D. Goldberg (eds.), Trace metals in seawater. Plenum, NY:579–608.

    Google Scholar 

  • Eugster, H. P. & L. A. Hardie, 1978. Saline lakes. In A. Lerman (ed.), Lakes-chemistry, geology, physics. Springer-Verlag, NY:237–293.

    Google Scholar 

  • Eugster, H. P. & B. F. Jones, 1979. Behavior of major solutes during closed-basin brine evolution. Am. J. Sci. 279:609–931.

    Article  CAS  Google Scholar 

  • Gibbs, R. J., 1970. Mechanisms controlling world water chemistry. Science 170:1088–1090.

    Article  PubMed  CAS  Google Scholar 

  • Green, W. J. & D. E. Canfield, 1984. Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochim. Cosmochim. Acta 48:2457–2467.

    Article  CAS  Google Scholar 

  • Green, W. J., D. E. Canfield, G. F. Lee & R. A. Jones, 1986a. Mn, Fe, Cu, and Cd distributions and residence times in closed basin Lake Vanda (Wright Valley, Antarctica). Hydrobiologia 134:237–248.

    Article  CAS  Google Scholar 

  • Green, W. J., T. G. Ferdelman, T. J. Gardner, L. C. Varner & M. P. Angle, 1986b. The residence times of eight trace metals in a closed basin Antarctic lake. Hydrobiologia 134:249–255.

    Article  CAS  Google Scholar 

  • Hardie, L. A. & H. P. Eugster, 1970. The evolution of closed-basin brines. Miner. Soc. Am. Spec. Publ. 3:273–290.

    Google Scholar 

  • Howard-Williams, C., C. L. Vincent, P. A. Broady & W. F. Vincent, 1986. Antarctic stream ecosystems: Variability in environmental properties and algal community structure. Int. Revue ges. Hydrobiol. 71:511–544.

    Article  CAS  Google Scholar 

  • Jacobs, L., S. Emerson & J. Skei, 1985. Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway. Geochim. Cosmochim. Acta 49:1433–1444.

    Article  CAS  Google Scholar 

  • Keys, J. R. & K. Williams, 1981. Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochim. Cosmochim. Acta 45:2299–2309.

    Article  Google Scholar 

  • Livingstone, D. H., 1963. Chemical composition of rivers and lakes. V.S. Geol. Surv. Prof. Paper 440-G.

    Google Scholar 

  • Mackenzie, F. T. & R. M. Garrels, 1966. Chemical mass balance between rivers and oceans. Am. J. Sci. 264:507–525.

    Article  CAS  Google Scholar 

  • Martin, J. M. & M. Whitfield, 1983. The significance of river input of chemical elements to the ocean. In C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton & E. D. Goldberg (eds.), Trace metals in seawater. Plenum Press, NY:265–296.

    Google Scholar 

  • Mason, B., 1966. Principles of geochemistry (3rd ed.). John Wiley & Sons, Inc., NY: 329 pp.

    Google Scholar 

  • Maybeck, M., 1982. Carbon nitrogen and phosphorus transport by world rivers. Amer. J. Sci. 282:401–450.

    Article  Google Scholar 

  • McKay, C. P., G. D. Clow, R. A. Wharton & S. W. Squyres, 1985. Thickness of ice on perennially frozen lakes. Nature 313:561–562.

    Article  PubMed  CAS  Google Scholar 

  • Parker, B. C., G. M. Simmons, K. G. Seaburg, D. Cathey & F. C. T. Allnut, 1982. Comparative ecology of plankton communities in seven Antarctic oasis lakes. J. Plank. Res. 4(2):271–286.

    Article  Google Scholar 

  • Porterfield, W. W., 1984. Inorganic chemistry: A unified approach. Addison-Wesley Publishing Co., Reading, MA:688 pp.

    Google Scholar 

  • Rast, W. F. & G. F. Lee, 1978. Summary analysis of the U.S. portion of the North American OECD eutrophication study results emphasizing nutrient loading lake response relationships and trophic state indices. U.S. EPA. EPA 600/3-78-008, Corvallis Environmental Research Laboratory, Corvallis, OR: 454 pp.

    Google Scholar 

  • Spencer, R. J., H. P. Eugster, B. F. Jones & S. L. Rettig, 1985. Geochemistry of Great Salt Lake, Utah. I: Hydrochemistry since 1850. Geochim. Cosmochim. Acta 49:727–737.

    Article  CAS  Google Scholar 

  • Torii, T., N. Yamagata, S. Nakaya, S. Murata, T. Hashimoto, O. Matsubaya & H. Sakai, 1975. Geochemical aspects of the McMurdo saline lakes with special emphasis on the distribution of nutrient matters. In T. Torii (ed.), Geochemical and geophysical studies in Dry Valleys, Victoria Land, Antarctica. Memoirs Natn. Inst. Polar Res. (Japan) Spec. Issue No. 4:5–29.

    Google Scholar 

  • Vincent, W. F., 1981. Production strategies in Antarctic inland waters: Phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 6:1215–1224.

    Article  Google Scholar 

  • Von Damm, K. L. & J. M. Edmond, 1984. Reverse weathering in the closed-basin lakes of the Ethiopian Rift. Amer. J. Sci. 284:835–862.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Green, W.J., Gardner, T.J., Ferdelman, T.G., Angle, M.P., Varner, L.C., Nixon, P. (1989). Geochemical processes in the Lake Fryxell Basin (Victoria Land, Antarctica). In: Vincent, W.F., Ellis-Evans, J.C. (eds) High Latitude Limnology. Developments in Hydrobiology, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2603-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2603-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7674-6

  • Online ISBN: 978-94-009-2603-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics