Relics of the Big Bang

  • J. V. Narlikar
Part of the Fundamental Theories of Physics book series (FTPH, volume 29)


All Friedmann models have an epoch in the past when the scale factor S was zero. We refer to this epoch as the big bang epoch. To mathematicians, the big bang implies a breakdown of the concept of spacetime geometry, and they have come to recognize it as an inevitable feature of Einstein’s general relativity. It is a feature that prevents the physicist from investigating what happened at S = 0 or prior to it. To some physicists, this abrupt termination of the past signifies an incompleteness of the theory of relativity. To them, a more complete theory of the future may show a way of avoiding the catastrophic nature of the S = 0 epoch. A universe that has been expanding forever or that has been oscillating between maximum and minimum (but finite) values of S, might result from such a theory.


Massive Neutrino Early Universe Baryon Number Monthly Notice Galaxy Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


The early work on primordial nucleosynthesis

  1. G. Gamow, Expanding universe and the origin of elements, Phys. Rev. 70, 572 (1946).ADSCrossRefGoogle Scholar
  2. R. A. Alpher and R. C. Hermann, Evolution of the universe, Nature 162, 774 (1948).ADSCrossRefGoogle Scholar
  3. R. A. Alpher, H. A. Bethe, and G. Gamow, The origin of chemical elements, Phys. Rev. 73, 80 (1948). [This paper, with the sequence of authors Alpher/Bethe/Gamow, led to the name ‘α/β/γ theory’.]ADSCrossRefGoogle Scholar

Stellar nucleosynthesis

  1. G. R. Burbidge, E. M. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547 (1957).ADSCrossRefGoogle Scholar

Later work on primordial nucleosynthesis

  1. C. Hayashi, Proton-neutron concentration ratio in the expanding universe at the stages preceding the formation of the elements, Progr. Theoret. Phys. (Japan) 5, 224 (1950).ADSCrossRefGoogle Scholar
  2. G. R. Burbidge, Nuclear energy generation and dissipation in galaxies, PASP 70, 83 (1958).ADSCrossRefGoogle Scholar
  3. F. Hoyle and R. J. Tayler, The mystery of cosmic helium abundance. Nature 203, 1108 (1964).ADSCrossRefGoogle Scholar
  4. P. J. E. Peebles, Primordial helium abundance and the primordial fireball, Ap. J. 146, 542 (1966).ADSCrossRefGoogle Scholar
  5. Ya B. Zeldovich, The ‘hot’ model of the universe, Usp. Fiz. Nauk 89, 647 (1966).Google Scholar
  6. R. V. Wagoner, W. A. Fowler, and F. Hoyle, On the synthesis of elements at very high temperatures, Ap. J. 148, 3 (1967).ADSCrossRefGoogle Scholar
  7. D. Schramm and R. V. Wagoner, Element production in the early universe, Ann. Rev. Nucl. Sci. 27, 37 (1977).ADSCrossRefGoogle Scholar

Discovery of the microwave background

  1. A. A. Penzias and R. W. Wilson, Measurement of excess antenna temperature at 4080 Mc/s, Ap. J. 142, 419 (1965) (see also the textbooks at the end).ADSCrossRefGoogle Scholar

Growth of fluctuations

  1. E. Lifshitz, On the gravitational instability of the expanding universe, J. Phys. (USSR) 10,116 (1946).MathSciNetGoogle Scholar

Analytical approaches to galaxy formation

  1. D. Lynden-Bell, Statistical mechanics of violent relaxation in stellar systems, Monthly Notices Roy. Astron. Soc. 156, 101 (1967).ADSGoogle Scholar
  2. P. J. E. Peebles, Origin of the angular momentum of galaxies, Ap. J. 155, 393 (1969).ADSCrossRefGoogle Scholar
  3. J. E. Gunn and J. R. Gott, On the infall of matter into clusters of galaxies, Ap. J. 176, 1 (1972).ADSCrossRefGoogle Scholar
  4. R. A. Sunyaev and Ya. B. Zeldovich, Formation of clusters of galaxies; protocluster fragmentation and intergalactic gas heating, Astron. Astrophys. 20, 189 (1972).ADSGoogle Scholar
  5. S. D. M. White and M. J. Rees, Core condensation in heavy halos: a two stage theory of galaxy formation and clustering, Monthly Notices Roy. Astron. Soc. 184, 643 (1978).Google Scholar
  6. A. G. Doroshkevich, E. M. Saar, and S. F. Shandarin, Spatial structure of protoclusters and the formation of galaxies, Monthly Notices Roy. Astron. Soc. 184, 643 (1978).ADSGoogle Scholar

N-body approaches to galaxy formation

  1. A. Toomre, Mergers and some consequences, in R. B. Larson and B. Tinsley (eds.), Evolution of Galaxies and Stellar Populations, Yale University Observatory, New Haven, p. 401.Google Scholar
  2. S. J. Aarseth, J. R. Gott, and E. L. Turner, N-body simulations of galaxy clustering, Ap. J. 228, 664 (1979).ADSCrossRefGoogle Scholar
  3. G. Efstathiou and B. J. T. Jones, The rotation of galaxies: numerical investigations of the tidal torque theory, Monthly Notices Roy. Astron. Soc. 186, 133 (1979).ADSGoogle Scholar

Clustering of galaxies

  1. H. Totsuji and T. Kihara, The correlation function for the distribution of galaxies, Publ. Astron. Soc. (Japan) 21 221 (1969).ADSGoogle Scholar
  2. P. J. E. Peebles, The gravitational instability picture and the nature of distribution of galaxies, Ap. J. 189, L51 (1974).ADSCrossRefGoogle Scholar
  3. S. J. Aarseth, J. R. Gott, and E. L. Turner, N-body simulations of galaxy clustering, Ap. J. 228, 664 (1979).ADSCrossRefGoogle Scholar

Nonrelic microwave background

  1. F. Hoyle, N. C. Wickramasinghe, and V. C. Reddish, Solid hydrogen and the microwave background, Nature 218, 1124 (1968).ADSCrossRefGoogle Scholar
  2. J. V. Narlikar, M. G. Edmunds, and N. C. Wickramasinghe, Limits on a microwave background without the big bang, in M. Rowan-Robinson, (ed.), Far Infrared Astronomy, Pergamon Press, New York, p. 131.Google Scholar
  3. M. J. Rees, Origin of pregalactic microwave background, Nature 275, 35 (1978).ADSCrossRefGoogle Scholar
  4. M. Rowan-Robinson, J. Negroponte, and J. Silk, Distortions of the cosmic microwave background spectrum by dust, Nature 281, 635 (1979).ADSCrossRefGoogle Scholar
  5. N. C. Rana, Cosmic thermalization and the microwave background radiation, Monthly Notices Roy. Astron. Soc. 197, 1125 (1981).ADSGoogle Scholar

Baryon excess in the early universe

  1. G. Steigman, Observational tests of antimatter cosmologies, Ann. Rev. Astron. Astrophys. 14, 339 (1976).ADSCrossRefGoogle Scholar
  2. M. Yoshimura, Unified gauge theories and the baryon number of the universe, Phys. Rev. Lett. 41, 281 (1978).ADSCrossRefGoogle Scholar
  3. S. Weinberg, Baryon-lepton non-conserving processes, Phys. Rev. Lett. 43, 1566.Google Scholar
  4. F. Wilczek and A. Zee, Operator analysis of nucleon decay, Phys. Rev. Lett. 43, 1571 (1979).ADSCrossRefGoogle Scholar

Helium abundance and neutrino types

  1. J. Yang, D. Schramm, G. Steigman, and R. T. Rood, Constraints on cosmology and neutrino physics from big bang nucleosynthesis, Ap. J. 221, 697 (1979).ADSCrossRefGoogle Scholar

Experimental data on massive neutrinos

  1. V. A. Lyubimov, E. G. Novikov, V. Z. Nozik, E. F. Tretyakov, and V. S. Kozik, Brighton conference on High Energy Physics (1983).Google Scholar

Massive neutrinos and cosmology

  1. R. Cowsik and J. McClelland, An upper limit on the neutrino rest mass, Phys. Rev. Lett. 29, 669 (1972).ADSCrossRefGoogle Scholar
  2. R. Cowsik and J. McClelland, Gravity of neutrinos of nonzero mass in astrophysics, Ap. J. 180, 7 (1973).ADSCrossRefGoogle Scholar
  3. S. Tremaine and J. E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42, 407 (1979).ADSCrossRefGoogle Scholar
  4. D. Schramm and G. Steigman, Relic neutrinos and the density of the universe, Ap. J. 243, 1 (1981).ADSCrossRefGoogle Scholar

Problems of the very early universe

  1. A. D. Linde, The inflationary universe, Rep. Progr. Phys. 47, 925 (1984).MathSciNetADSCrossRefGoogle Scholar

Textbooks on nucleosynthesis and big bang cosmology

  1. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, McGraw-Hill, New York (1968).Google Scholar
  2. P. J. E. Peebles, Physical Cosmology, Princeton University Press, Princeton (1971).Google Scholar
  3. S. Weinberg, Gravitation and Cosmology, Wiley, New York (1972).Google Scholar
  4. P. J. E. Peebles, The Large-Scale Structure of the Universe, Princeton University Press, Princeton (1980).Google Scholar
  5. J. V. Narlikar, Introduction to Cosmology, Jones and Bartlett, Boston (1983).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. V. Narlikar
    • 1
  1. 1.Theoretical AstrophysicsTata Institute of Fundamental ResearchBombayIndia

Personalised recommendations