Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 29))

  • 488 Accesses

Abstract

All Friedmann models have an epoch in the past when the scale factor S was zero. We refer to this epoch as the big bang epoch. To mathematicians, the big bang implies a breakdown of the concept of spacetime geometry, and they have come to recognize it as an inevitable feature of Einstein’s general relativity. It is a feature that prevents the physicist from investigating what happened at S = 0 or prior to it. To some physicists, this abrupt termination of the past signifies an incompleteness of the theory of relativity. To them, a more complete theory of the future may show a way of avoiding the catastrophic nature of the S = 0 epoch. A universe that has been expanding forever or that has been oscillating between maximum and minimum (but finite) values of S, might result from such a theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

The early work on primordial nucleosynthesis

  • G. Gamow, Expanding universe and the origin of elements, Phys. Rev. 70, 572 (1946).

    Article  ADS  Google Scholar 

  • R. A. Alpher and R. C. Hermann, Evolution of the universe, Nature 162, 774 (1948).

    Article  ADS  Google Scholar 

  • R. A. Alpher, H. A. Bethe, and G. Gamow, The origin of chemical elements, Phys. Rev. 73, 80 (1948). [This paper, with the sequence of authors Alpher/Bethe/Gamow, led to the name ‘α/β/γ theory’.]

    Article  ADS  Google Scholar 

Stellar nucleosynthesis

  • G. R. Burbidge, E. M. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

Later work on primordial nucleosynthesis

  • C. Hayashi, Proton-neutron concentration ratio in the expanding universe at the stages preceding the formation of the elements, Progr. Theoret. Phys. (Japan) 5, 224 (1950).

    Article  ADS  Google Scholar 

  • G. R. Burbidge, Nuclear energy generation and dissipation in galaxies, PASP 70, 83 (1958).

    Article  ADS  Google Scholar 

  • F. Hoyle and R. J. Tayler, The mystery of cosmic helium abundance. Nature 203, 1108 (1964).

    Article  ADS  Google Scholar 

  • P. J. E. Peebles, Primordial helium abundance and the primordial fireball, Ap. J. 146, 542 (1966).

    Article  ADS  Google Scholar 

  • Ya B. Zeldovich, The ‘hot’ model of the universe, Usp. Fiz. Nauk 89, 647 (1966).

    Google Scholar 

  • R. V. Wagoner, W. A. Fowler, and F. Hoyle, On the synthesis of elements at very high temperatures, Ap. J. 148, 3 (1967).

    Article  ADS  Google Scholar 

  • D. Schramm and R. V. Wagoner, Element production in the early universe, Ann. Rev. Nucl. Sci. 27, 37 (1977).

    Article  ADS  Google Scholar 

Discovery of the microwave background

  • A. A. Penzias and R. W. Wilson, Measurement of excess antenna temperature at 4080 Mc/s, Ap. J. 142, 419 (1965) (see also the textbooks at the end).

    Article  ADS  Google Scholar 

Growth of fluctuations

  • E. Lifshitz, On the gravitational instability of the expanding universe, J. Phys. (USSR) 10,116 (1946).

    MathSciNet  Google Scholar 

Analytical approaches to galaxy formation

  • D. Lynden-Bell, Statistical mechanics of violent relaxation in stellar systems, Monthly Notices Roy. Astron. Soc. 156, 101 (1967).

    ADS  Google Scholar 

  • P. J. E. Peebles, Origin of the angular momentum of galaxies, Ap. J. 155, 393 (1969).

    Article  ADS  Google Scholar 

  • J. E. Gunn and J. R. Gott, On the infall of matter into clusters of galaxies, Ap. J. 176, 1 (1972).

    Article  ADS  Google Scholar 

  • R. A. Sunyaev and Ya. B. Zeldovich, Formation of clusters of galaxies; protocluster fragmentation and intergalactic gas heating, Astron. Astrophys. 20, 189 (1972).

    ADS  Google Scholar 

  • S. D. M. White and M. J. Rees, Core condensation in heavy halos: a two stage theory of galaxy formation and clustering, Monthly Notices Roy. Astron. Soc. 184, 643 (1978).

    Google Scholar 

  • A. G. Doroshkevich, E. M. Saar, and S. F. Shandarin, Spatial structure of protoclusters and the formation of galaxies, Monthly Notices Roy. Astron. Soc. 184, 643 (1978).

    ADS  Google Scholar 

N-body approaches to galaxy formation

  • A. Toomre, Mergers and some consequences, in R. B. Larson and B. Tinsley (eds.), Evolution of Galaxies and Stellar Populations, Yale University Observatory, New Haven, p. 401.

    Google Scholar 

  • S. J. Aarseth, J. R. Gott, and E. L. Turner, N-body simulations of galaxy clustering, Ap. J. 228, 664 (1979).

    Article  ADS  Google Scholar 

  • G. Efstathiou and B. J. T. Jones, The rotation of galaxies: numerical investigations of the tidal torque theory, Monthly Notices Roy. Astron. Soc. 186, 133 (1979).

    ADS  Google Scholar 

Clustering of galaxies

  • H. Totsuji and T. Kihara, The correlation function for the distribution of galaxies, Publ. Astron. Soc. (Japan) 21 221 (1969).

    ADS  Google Scholar 

  • P. J. E. Peebles, The gravitational instability picture and the nature of distribution of galaxies, Ap. J. 189, L51 (1974).

    Article  ADS  Google Scholar 

  • S. J. Aarseth, J. R. Gott, and E. L. Turner, N-body simulations of galaxy clustering, Ap. J. 228, 664 (1979).

    Article  ADS  Google Scholar 

Nonrelic microwave background

  • F. Hoyle, N. C. Wickramasinghe, and V. C. Reddish, Solid hydrogen and the microwave background, Nature 218, 1124 (1968).

    Article  ADS  Google Scholar 

  • J. V. Narlikar, M. G. Edmunds, and N. C. Wickramasinghe, Limits on a microwave background without the big bang, in M. Rowan-Robinson, (ed.), Far Infrared Astronomy, Pergamon Press, New York, p. 131.

    Google Scholar 

  • M. J. Rees, Origin of pregalactic microwave background, Nature 275, 35 (1978).

    Article  ADS  Google Scholar 

  • M. Rowan-Robinson, J. Negroponte, and J. Silk, Distortions of the cosmic microwave background spectrum by dust, Nature 281, 635 (1979).

    Article  ADS  Google Scholar 

  • N. C. Rana, Cosmic thermalization and the microwave background radiation, Monthly Notices Roy. Astron. Soc. 197, 1125 (1981).

    ADS  Google Scholar 

Baryon excess in the early universe

  • G. Steigman, Observational tests of antimatter cosmologies, Ann. Rev. Astron. Astrophys. 14, 339 (1976).

    Article  ADS  Google Scholar 

  • M. Yoshimura, Unified gauge theories and the baryon number of the universe, Phys. Rev. Lett. 41, 281 (1978).

    Article  ADS  Google Scholar 

  • S. Weinberg, Baryon-lepton non-conserving processes, Phys. Rev. Lett. 43, 1566.

    Google Scholar 

  • F. Wilczek and A. Zee, Operator analysis of nucleon decay, Phys. Rev. Lett. 43, 1571 (1979).

    Article  ADS  Google Scholar 

Helium abundance and neutrino types

  • J. Yang, D. Schramm, G. Steigman, and R. T. Rood, Constraints on cosmology and neutrino physics from big bang nucleosynthesis, Ap. J. 221, 697 (1979).

    Article  ADS  Google Scholar 

Experimental data on massive neutrinos

  • V. A. Lyubimov, E. G. Novikov, V. Z. Nozik, E. F. Tretyakov, and V. S. Kozik, Brighton conference on High Energy Physics (1983).

    Google Scholar 

Massive neutrinos and cosmology

  • R. Cowsik and J. McClelland, An upper limit on the neutrino rest mass, Phys. Rev. Lett. 29, 669 (1972).

    Article  ADS  Google Scholar 

  • R. Cowsik and J. McClelland, Gravity of neutrinos of nonzero mass in astrophysics, Ap. J. 180, 7 (1973).

    Article  ADS  Google Scholar 

  • S. Tremaine and J. E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42, 407 (1979).

    Article  ADS  Google Scholar 

  • D. Schramm and G. Steigman, Relic neutrinos and the density of the universe, Ap. J. 243, 1 (1981).

    Article  ADS  Google Scholar 

Problems of the very early universe

Textbooks on nucleosynthesis and big bang cosmology

  • D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, McGraw-Hill, New York (1968).

    Google Scholar 

  • P. J. E. Peebles, Physical Cosmology, Princeton University Press, Princeton (1971).

    Google Scholar 

  • S. Weinberg, Gravitation and Cosmology, Wiley, New York (1972).

    Google Scholar 

  • P. J. E. Peebles, The Large-Scale Structure of the Universe, Princeton University Press, Princeton (1980).

    Google Scholar 

  • J. V. Narlikar, Introduction to Cosmology, Jones and Bartlett, Boston (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. R. Iyer N. Mukunda C. V. Vishveshwara

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Narlikar, J.V. (1989). Relics of the Big Bang. In: Iyer, B.R., Mukunda, N., Vishveshwara, C.V. (eds) Gravitation, Gauge Theories and the Early Universe. Fundamental Theories of Physics, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2577-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2577-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7664-7

  • Online ISBN: 978-94-009-2577-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics