Advertisement

Black-Hole Thermodynamics and Hawking Radiation

  • B. R. Iyer
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 29)

Abstract

The most generally known solution to Einstein’s field equations that contains black holes is that of the Kerr—Newman, family, which describes axisymmetric matter-free spacetimes and represents rotating and electrically charged black holes. This solution is a three-parameter family labelled by total mass energy M, angular momentum J and charge Q. The line element is given by
$$ds^{^2 } = \frac{\Delta } {\Sigma }\left( {dt - a\sin ^2 \theta d\varphi } \right)^2 - \frac{{\sin ^2 \theta }} {\Sigma }\left( {\left( {r^2 + a^2 } \right)d\varphi - adt} \right)^2 - \frac{\Sigma } {\Delta }dr^2 - \Sigma d\theta ^2 $$
(1a)
where
$$\Delta = r^2 + a^2 - 2Mr + Q^2 ;\Sigma = r^2 + a^2 \cos ^2 \theta ;j = Ma $$
(1b)

Keywords

Black Hole Angular Momentum Event Horizon Kerr Black Hole Area Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. W. Sciama, Vistas in Astronomy 19, 385 (1976); P. C. W. Davies, Rep. Prog. Phys. 41, 1314(1978).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. D. Bekenstein, Phy. Rev. D7, 2333 (1973), D9, 3292 (1974).MathSciNetADSGoogle Scholar
  3. 3.
    J. M. Bardeen, B. Carter and S. W. Hawking, Commun. Math. Phys. 31, 161 (1973).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Penrose, Rev. Nuovo Cim. 1 252 (1969).ADSGoogle Scholar
  5. 5.
    Y. B. Zeldovich, JETP Lett. 14, 180 (1971); C. W. Misner, Bull. Am. Phy. Soc. 17, 472 (1972); W. H. Press and S. A. Teukolsky, Nature 238, 211 (1972).ADSGoogle Scholar
  6. 6.
    Y. B. Zel’dovich, JETP 35, 1085 (1972); A. A. Starobinsky, JETP 37, 28 (1973); W. G. Unruh, Phys. Rev. D10, 3194 (1974).ADSGoogle Scholar
  7. 7.
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    W. Zurek and K. Thorne, Phys. Rev. Lett. 54, 2171 (1985).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    C. J. Isham in M. Papagiannis (ed.) Eighth Texas Symposium in Relativistic Astrophysics.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • B. R. Iyer
    • 1
  1. 1.Raman Research InstituteBangaloreIndia

Personalised recommendations