Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 29))

  • 483 Accesses

Abstract

The most generally known solution to Einstein’s field equations that contains black holes is that of the Kerr—Newman, family, which describes axisymmetric matter-free spacetimes and represents rotating and electrically charged black holes. This solution is a three-parameter family labelled by total mass energy M, angular momentum J and charge Q. The line element is given by

$$ds^{^2 } = \frac{\Delta } {\Sigma }\left( {dt - a\sin ^2 \theta d\varphi } \right)^2 - \frac{{\sin ^2 \theta }} {\Sigma }\left( {\left( {r^2 + a^2 } \right)d\varphi - adt} \right)^2 - \frac{\Sigma } {\Delta }dr^2 - \Sigma d\theta ^2 $$
((1a))

where

$$\Delta = r^2 + a^2 - 2Mr + Q^2 ;\Sigma = r^2 + a^2 \cos ^2 \theta ;j = Ma $$
((1b))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. W. Sciama, Vistas in Astronomy 19, 385 (1976); P. C. W. Davies, Rep. Prog. Phys. 41, 1314(1978).

    Article  MathSciNet  ADS  Google Scholar 

  2. J. D. Bekenstein, Phy. Rev. D7, 2333 (1973), D9, 3292 (1974).

    MathSciNet  ADS  Google Scholar 

  3. J. M. Bardeen, B. Carter and S. W. Hawking, Commun. Math. Phys. 31, 161 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. Penrose, Rev. Nuovo Cim. 1 252 (1969).

    ADS  Google Scholar 

  5. Y. B. Zeldovich, JETP Lett. 14, 180 (1971); C. W. Misner, Bull. Am. Phy. Soc. 17, 472 (1972); W. H. Press and S. A. Teukolsky, Nature 238, 211 (1972).

    ADS  Google Scholar 

  6. Y. B. Zel’dovich, JETP 35, 1085 (1972); A. A. Starobinsky, JETP 37, 28 (1973); W. G. Unruh, Phys. Rev. D10, 3194 (1974).

    ADS  Google Scholar 

  7. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  8. W. Zurek and K. Thorne, Phys. Rev. Lett. 54, 2171 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. J. Isham in M. Papagiannis (ed.) Eighth Texas Symposium in Relativistic Astrophysics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. R. Iyer N. Mukunda C. V. Vishveshwara

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Iyer, B.R. (1989). Black-Hole Thermodynamics and Hawking Radiation. In: Iyer, B.R., Mukunda, N., Vishveshwara, C.V. (eds) Gravitation, Gauge Theories and the Early Universe. Fundamental Theories of Physics, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2577-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2577-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7664-7

  • Online ISBN: 978-94-009-2577-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics