Skip to main content

Abstract

In the Sun-Earth-Moon system, the Earth, moving around the Sun in the ecliptic plane, travels in an orbit with an eccentricity of 0.017. The Earth’s equatorial plane has a mean inclination of 23°27’ from the ecliptic plane. The Moon moves around the Earth in its own orbit, which has a mean inclination of 5°09’ from the ecliptic plane and an orbit of eccentricity 0.055. The Moon’s and the Earth’s orbits are not contained in the same plane, the line of nodes of the Moon’s orbit regresses in the ecliptic plane with a period of 18.6 yr, while the line of apsides progresses in its own orbital plane with a period of 8.8 yr. Consequently, the angle between the equatorial plane of the Earth and the orbital plane of the Moon varies from 28°36’ to 18°18’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, R.R.; ‘Satellite Orbit Perturbations Due to Radiation Pressure and Luni-Solar Forces’, Technical Note No. Space 7, Royal Aircraft Establishment, Farnborough, England (1962).

    MATH  Google Scholar 

  • Allan, R.R.; ‘Perturbation of a Geostationary Satellite — 2. Lunisolar Effects’, Technical Note No. Space 47, Royal Aircraft Establishment, Farnborough, England (1963).

    Google Scholar 

  • Allan, R.R. and Cook, G.E.; ‘The Long-Period Motion of the Plane of a Distant Circular Orbit’, Proceedings of Royal Society (London) A280, 97–109 (1964).

    Article  ADS  Google Scholar 

  • Bogoliubov, H. and Mitropolsky, J.; Asymptotic Method in the Theory of Nonlinear Oscillations, Hindustan Publishing Corporation, Delhi-6, India, 1961.

    Google Scholar 

  • Brouwer, D. and Clemence, G.M.; Methods of Celestial Mechanics, Academic Press, New York and London, 1961.

    MATH  Google Scholar 

  • Cook, G.E.; ‘The Long-Term Evolution of Circular Near-Equatorial Orbits at Medium Distances from the Earth’, Technical Note No. Space 46, Royal Aircraft Establishment, Farnborough, England (1963).

    Google Scholar 

  • Escobal, P.R.; Method of Orbit Determination, p. 366, John Wiley & Sons, Inc., New York, 1965.

    Google Scholar 

  • Flury, W.; ‘Zur Bahnberechnung Von Geostationarer Satelliten’, Celestial Mechanics 7, 376–383 (1973a).

    Article  ADS  Google Scholar 

  • Flury, W.; ‘Perturbation Theory for Geostationary Satellites — Application of Bohlin von Zeipel Method’, 10th International Symposium on Space Science and Technology, Tokyo, Japan (1973b).

    Google Scholar 

  • Flury, W.; ‘Station-Keeping of a Geostationary Satellite’, Review of Scientific Technique CECLES/CERS 5, 131–155 (1973c).

    Google Scholar 

  • Frick, R.H. and Garber, T.B.; ‘Perturbations of a Synchronous Satellite’, R-399-NASA, RAND Corporation, Santa Monica, California (1962).

    MATH  Google Scholar 

  • Frick, R.H.; ‘Orbital Regression of Synchronous Satellites Due to the Combined Gravitational Effects of the Sun, the Moon and the Oblate Earth’, R-454-NASA, RAND Corporation, Santa Monica, California (1967).

    Google Scholar 

  • Giacaglia, G.E.; ‘Lunar Perturbations of Artificial Satellite of the Earth’, Celestial Mechanics 2, 239–267 (1975).

    MathSciNet  MATH  Google Scholar 

  • Graf, A.; ‘Lunar and Solar Perturbations on the Orbit of a Geostationary Satellite’, AAS paper No. 75-023 (1975).

    Google Scholar 

  • Kamel, A. and Tibbits, R.; ‘Some Useful Results on Initial Node Locations for Near-Equatorial Circular Satellite Orbits’, Celestial Mechanics 8, 45–73 (1973a).

    Article  ADS  Google Scholar 

  • Kamel, A., Ekman, D., and Tibbits, R.; ‘East-west Stationkeeping Requirements of Nearly Synchronous Satellites Due to Earth’s Triaxiality and Luni-Solar Effects’, Celestial Mechanics 8, 129–148 (1973b).

    Article  ADS  Google Scholar 

  • Kamel, A.; ‘Synchronous Satellite Ephemeris Due to Earth’s Triaxiality and Luni-Solar Effects’, AIAA/AAS Astrodynarnics Conference, Palo Alto, California (1978).

    Google Scholar 

  • Kozai, Y.; ‘On the Effects of the Sun and Moon upon the Motion of a Close Earth Satellite’, Special Report 22, Smithsonian Astrophysical Observatory, Cambridge, Mass. (1959).

    Google Scholar 

  • Kozai, Y.; ‘A New Method to Compute Lunisolar Perturbations in Satellite Motions’, Special Report 349, Smithsonian Astrophysical Observatory, Cambridge, Mass. (1973).

    Google Scholar 

  • Lidov, M.L.; ‘On the Approximate Analysis of the Orbit of Evolution of Artificial Satellites’, Dynamics of Satellites, M. Roy (ed.), Springer-Verlag, Berlin, 1963a.

    Google Scholar 

  • Lidov, M.L.; ‘Evolution of the Orbits of Artificial Satellites of Planets as Affected by Gravitational Perturbations from External Bodies’, AIAA J. 1, 1985–2002 (1963b).

    Article  ADS  Google Scholar 

  • Moe, M.M.; ‘Solar-Lunar Perturbation of the Orbit of an Earth Satellite’, ARS J. 30, 485–487 (1960).

    Article  Google Scholar 

  • Musen, P., Bailie, A.E., and Upton, E.; ‘Development of the Lunar and Solar Perturbations in the Motion of an Artificial Satellite’, NASA TND-494 (1961a).

    Google Scholar 

  • Musen, P.; ‘On the Long-Period Luni-Solar Effect in the Motion of the Artificial Satellite’, J. Geophys. Research 66, 1659–1666 (1961b).

    Article  ADS  MathSciNet  Google Scholar 

  • Musen, P.; ‘On the Long-Term Luni-Solar Effect in the Motion of the Artificial Satellite’, J. Geophys. Research 66, 2797–2805 (1961c).

    Article  ADS  MathSciNet  Google Scholar 

  • Richardson, D.L.; ‘The Long-Period Motion of 24-hr Satellites’, AIAA Paper No. 76–828 (1976).

    Google Scholar 

  • Sehnal, L.; ‘The Stability of the 24-hr Satellite’, Astronautica Acta 7, 445–454 (1961).

    Google Scholar 

  • Voshkov’yak, M.A.; ‘Perturbed Motion of a Stationary Earth Satellite During a Short Time Interval’. Cosmic Research 7. 756–765 (1969).

    ADS  Google Scholar 

  • Voshkov’yak, M.A.; ‘On the Method of Approximate Computation of the Motion of a Synchronous Artificial Satellite’. Cosmic Research 10,. 131–140 (1972).

    ADS  Google Scholar 

  • Voshkov’yak, M.A. and Lidov, M.L.; ‘An Approximate Description of the Evolution of the Orbit of a Stationary Artificial Earth Satellite’, Cosmic Research 11, 305–316 (1973).

    ADS  Google Scholar 

  • Zee, C.H.; ‘Effects of the Sun and the Moon on a Synchronous Satellite’, Report No. ADR 06-06-68.2, Grumman Aircraft Engineering Corporation, Bethpage, New York (1968).

    Google Scholar 

  • Zee, C.H.; ‘Effect of Earth Oblateness and Equator Ellipticity on a Synchronous Satellite’ Astronautica Acta 16, 143–153 (1971).

    ADS  MATH  Google Scholar 

  • Zee, C.H.; ‘Effects of the Sun and the Moon on a Near-Equatorial Synchronous Satellite’, Astronautica Acta 17, 891–906 (1972).

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zee, CH. (1989). Sun and Moon Effect. In: Theory of Geostationary Satellites. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2573-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2573-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7662-3

  • Online ISBN: 978-94-009-2573-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics