Skip to main content

Superfluidity: old concepts in search of new contexts

  • Chapter
  • 84 Accesses

Part of the book series: Science and Philosophy ((SCPH,volume 4))

Abstract

Helium “has always been a most remarkable and entertaining substance. Consider the manner of its discovery. Most of the rare elements have been found by painstaking search and careful chemical isolation, but helium was discovered almost by accident, not on the earth but in the sun! In fact, after the first discovery of helium in the solar atmosphere, nearly thirty years were to elapse before it was found to be present on the earth”.1 There was an immediate race to separate the gas in pure form in quantity and to try to liquefy it.2 Thirteen years of unsuccessful attempts (Olszewski in 1896, De war in 1901, Travers in 1903 and Olszewski again in 1905) were to elapse before it was liquefied by Kamerlingh Onnes3 on 10th July 1908.4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. J.F.Allen, 1952, (p. 66).

    Google Scholar 

  2. See H. Kamerlingh Onnes, 1908, (esp. p. 18), where the first liquefaction of helium is described with great precision, in full detail.

    Google Scholar 

  3. H. Kamerlingh Onnes, 1911a, (see p. 4).

    Google Scholar 

  4. H. Kamerlingh Onnes, 1913e, (p. 327).

    Google Scholar 

  5. H. Kamerlingh Onnes, 1913d, (p. 55).

    Google Scholar 

  6. H. B. G. Casimir, 1973, (p. 493).

    Google Scholar 

  7. H. B. G. Casimir, 1977, (p. 174).

    Google Scholar 

  8. R. B. Hallock, 1982, (p. 202).

    Google Scholar 

  9. H. Kamerlingh Onnes, 1922, (p. 27).

    Google Scholar 

  10. K.Mendelssohn, 1977, (p. 251).

    Google Scholar 

  11. A. Th. van Urk, W. H. Keesom, H. Kamerlingh Onnes, 1925; J. I. Dana, H. Kamerlingh Onnes, 1926a; L. I. Dana, H. Kamerlingh Onnes, 1926b (abridged form in 1925).

    Google Scholar 

  12. L. I. Dana, H. Kamerlingh Onnes, 1926a, (p. 31, fn.1). The authors continue: “The change of density of the liquid also indicates something of the same kind”. See also R. J. Donelly and A.W.Francis, 1985.

    Google Scholar 

  13. G. E. Mac Wood, 1938 a; G. E. Mac Wood, 1938b; W. H. Keesom, J. E. MacWood, 1938.

    Google Scholar 

  14. H. B. G. Casimir, 1973, (p. 494).

    Google Scholar 

  15. J. C. McLennan, H. D. Smith, J. O. Wilhelm, 1932, (p. 165).

    Google Scholar 

  16. W. H. Keesom, A. P. Keesom, 1932, (p. 19).

    Google Scholar 

  17. W. H. Keesom, A. P. Keesom, 1935.

    Google Scholar 

  18. W. H. Keesom, A. P. Keesom, 1936, (p. 360).

    Google Scholar 

  19. J. F. Allen, R. Peirls, M. Zaki Uddin, 1937.

    Google Scholar 

  20. C T.Lane, 1962, (p. 33).

    Google Scholar 

  21. J.F.Allen, 1952, (p. 78).

    Google Scholar 

  22. K. Mendelssohn, 1972, (p. 430); see also his ref. 21 and 22.

    Google Scholar 

  23. F.E.Simon, 1952, (p. 1).

    Google Scholar 

  24. See H. Kamerlingh Onnes, 1911a and 1913e and text to footnote 9.

    Google Scholar 

  25. See M. Planck, 1911a.

    Google Scholar 

  26. F. E. Simon, 1927, (p. 808). In 1934 he pointed out that the high zero-point energy of helium was responsible for keeping the substance, under saturation pressure, in the liquid phase down to absolute zero, (see F. E. Simon, 1934).

    Google Scholar 

  27. The first hint of such an idea is found in W. H. Keesom and M. Wolfke, 1927, (p. 22).

    Google Scholar 

  28. See W. H. Keesom, 1932, (p. 51).

    Google Scholar 

  29. K. Clusius, paper read in Breslau, 1933, unpublished.

    Google Scholar 

  30. F. London, 1936, (p. 580). “It is perhaps characteristic of the trend of thought at the time that F., London avoided the term liquid’ in the title of his paper, referring to ‘condensed’ helium.” [K. Mendelssohn, 1956, (p. 386).]

    Google Scholar 

  31. F. London, 1936, (p. 581).

    Google Scholar 

  32. Ibid., (pp. 582-583).

    Google Scholar 

  33. F. London, 1938a, (p. 643).

    Google Scholar 

  34. F.London, 1939, (p. 58).

    Google Scholar 

  35. See H. London, 1960, (p. 39).

    Google Scholar 

  36. W. H. Keesom, K. W. Taconis, 1938a.

    Google Scholar 

  37. H.London, 1960, (p. 39).

    Google Scholar 

  38. A. Einstein, 1925. Uhlenbeck, in his doctoral thesis, had called Einstein’s result into doubt and there the matter rested until F. London’s letter to Nature and Uhlenbeck and Kahn’s paper in Physica in which Uhlenbeck had withdrawn his former objection. [See G. E. Uhlenbeck, 1927; F. London, 1928a]. “If the λ-phenomenon of liquid helium had been discovered between 1925 and 1927, one would perhaps have tried at once to interpret it as the condensation predicted by Einstein” [F. London, 1939, (p. 59)].

    Google Scholar 

  39. F. London, 1938b, (p. 951).

    Google Scholar 

  40. See footnote 33.

    Google Scholar 

  41. F. London, 1938a, (p. 644).

    Google Scholar 

  42. L. Tisza, 1949, (p. 2).

    Google Scholar 

  43. F. London, 1938b and 1939.

    Google Scholar 

  44. F. London, 1947, (p. 8).

    Google Scholar 

  45. J. F. Allen, 1952, (p. 90).

    Google Scholar 

  46. P.L. Kapitza, 1941a, (p. 581).

    Google Scholar 

  47. P. L. Kapitza, 1 940, (p. 24).

    Google Scholar 

  48. P.L. Kapitza, 1941b, (p. 638).

    Google Scholar 

  49. J. Frenkel, 1946, (esp. p. 308).

    Google Scholar 

  50. “This name was suggested by I. E. Tamm”. [L. D. Landau, 1941, (fn. in p. 200).

    Google Scholar 

  51. V. L. Ginzburg, 1943, (p. 305).

    Google Scholar 

  52. V. Peshkov, 1944; V. Peshkov, 1946.

    Google Scholar 

  53. F. London, 1947, (p. 13).

    Google Scholar 

  54. L. Tisza, 1949, (p. 2).

    Google Scholar 

  55. Landau was at this time unaware of Tisza’s prediction of temperature waves. [See footnote 91.

    Google Scholar 

  56. According to Peshkov, 1946, (p. 167). “An attempt to detect the second sound by the beats in standing waves radiated by oscillating piezoquartz was undertaken in the Institute for Physical Problems by Shalnikov and Sokolov before the war, but without success”.

    Google Scholar 

  57. S.G. Brush, 1983, (p. 184).

    Google Scholar 

  58. E.Lifshitz, 1944, (p. 241).

    Google Scholar 

  59. V. Peshkov, 1944. It is interesting to note that in 1940 Ganz sent a heat pulse down a long capillary of He II and estimated its velocity to be of the order of 100 m/sec. “Although it was not then recognized as such, this must be considered to be the first observation of a travelling temperature wave in helium II”. [J. F. Allen, 1952, (p. 90)].

    Google Scholar 

  60. N. Bogoliubov, 1947, (p. 247).

    Google Scholar 

  61. L. Tisza, 1949, (pp. 2–3).

    Google Scholar 

  62. J.F. Allen, 1952, (p. 92).

    Google Scholar 

  63. F. London, 1949b, (p. 696).

    Google Scholar 

  64. N. Bogoliubov, 1947, (p. 247).

    Google Scholar 

  65. S. G. Brush, 1983, (p. 189).

    Google Scholar 

  66. F. London, 1951, (pp. 2–3).

    Google Scholar 

  67. R. Feynman, 1955, (p. 25).

    Google Scholar 

  68. R. Feynman, 1953a, (p. 1116). See also R. Feynman, 1953b.

    Google Scholar 

  69. R. Feynman, 1953c.

    Google Scholar 

  70. R. Feynman, 1954.

    Google Scholar 

  71. R. Feynman, M. Cohen, 1956.

    Google Scholar 

  72. L. Onsager, Remark at a Low Temperature Physics Conference at Shelter Island in 1948, Published in Nuovo Cimento, supplement, 6, 1949, (p. 249).

    Google Scholar 

  73. R. Feynman, 1955, (p. 45).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gavroglu, K., Goudaroulis, Y. (1989). Superfluidity: old concepts in search of new contexts. In: Methodological Aspects of the Development of Low Temperature Physics 1881–1956. Science and Philosophy, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2556-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2556-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7655-5

  • Online ISBN: 978-94-009-2556-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics