Skip to main content

Part of the book series: Science and Philosophy ((SCPH,volume 4))

  • 84 Accesses

Abstract

The earliest attempts to formulate a theory of electrical conductivity of metals brought into prominence the variation of conductivity with temperature. As lower and lower temperatures were reached toward the end of the nineteenth century, physicists began to study the resistivity of metals as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. J. Dewar, J. A. Fleming, 1893, (p. 296). See also J. Dewar, J. A. Fleming, 1896, (p. 81): “These measurements, therefore, afford a further confirmation of the law we have enunciated as a deduction from experimental observations, that the electrical resistivity of a pure metal vanishes at the absolute zero of temperaturex.”

    Google Scholar 

  2. A. M. Clerke, 1901, (p. 705).

    Google Scholar 

  3. H. Kamerlingh Onnes, J. Clay, 1906a, (p. 39).

    Google Scholar 

  4. H. Kamerlingh Onnes, J. Clay, 1907a, (p. 18). See also H. Kamerlingh Onnes, J. Clay, 1907b.

    Google Scholar 

  5. H. Kamerlingh Onnes, J. Clay, 1908, (p. 26).

    Google Scholar 

  6. H. Kamerlingh Onnes, 1911a. For a detailed presentation of the discovery of superconductivity and the work done during the first years following the discovery see P. F. Dahl, 1984, 1986.

    Google Scholar 

  7. H. Kamerlingh Onnes, 1913e, (p. 330).

    Google Scholar 

  8. H. Kamerlingh Onnes, 1913d, (p. 59). The electrical resistance of alloys does not, in general, become very small at low temperatures and this suggested that the purity of the metals is of great importance for temperature-resistance investigations.

    Google Scholar 

  9. H. Kamerlingh Onnes, 1911a.

    Google Scholar 

  10. H. Kamerlingh Onnes, 1911 e, (p. 13).

    Google Scholar 

  11. H. Kamerlingh Onnes, 191 If, (p. 24).

    Google Scholar 

  12. H. Kamerlingh Onnes, 1913a, b; p. 3 and p. 35.

    Google Scholar 

  13. H. Kamerlingh Onnes, 1913b, (p. 31). This may be a reason why the otherwise careful E. Cohen says that superconductivity was discovered in 1913.

    Google Scholar 

  14. H. Kamerlingh Onnes, 1913e, (p. 330).

    Google Scholar 

  15. H. Kamerlingh Onnes, 1913d, (pp. 58–59).

    Google Scholar 

  16. Ibid., (pp. 59–60).

    Google Scholar 

  17. W. Nernst, 1911, (p. 313). F. A. Lindemann, 1911.

    Google Scholar 

  18. H. Kamerlingh Onnes, 1913d, (p. 62).

    Google Scholar 

  19. H. Kamerlingh Onnes, 1912, (p. 10).

    Google Scholar 

  20. H. Kamerlingh Onnes, 1912, (p. 10).

    Google Scholar 

  21. H. Kamerlingh Onnes, 1913b, (pp. 43–44).

    Google Scholar 

  22. Ibid., (p. 44).

    Google Scholar 

  23. See Ibid., (p. 46).

    Google Scholar 

  24. H. Kamerlingh Onnes, 1913a.

    Google Scholar 

  25. H. Kamerlingh Onnes, 1914b, (p. 11).

    Google Scholar 

  26. See J. J. Thomson, 1915, esp. pp. 192–3 and 198.

    Google Scholar 

  27. Ibid., (p. 198).

    Google Scholar 

  28. Lindemann’s view later developed by Borelius, 1918, and Haber, 1919.

    Google Scholar 

  29. H. Kamerlingh Onnes, 1921, (pp. 49–50).

    Google Scholar 

  30. H. Kamerlingh Onnes, B. Beckman, 1912a.

    Google Scholar 

  31. H. Kamerlingh Onnes, B. Beckman, 1912b.

    Google Scholar 

  32. W. Tuyn, H. Kamerlingh Onnes, 1926. The conclusions are expressed in Kamerlingh Onnes’s characteristic way: “... on the faith of the results obtained up till now we think we may accept the hypothesis of Silsbee as being correct”. [Ibid., (p. 37)].

    Google Scholar 

  33. G. J. Sizoo, H. Kamerlingh Onnes, 1925, (p. 13).

    Google Scholar 

  34. G. J. Sizoo, W. J. De Haas, H. Kamerlingh Onnes, 1926, (p. 29).

    Google Scholar 

  35. See G. J. Sizoo, H. Kamerlingh Onnes, 1925, and G. J. Sizoo, W. J. De Haas, H. Kamerlingh Onnes, 1926.

    Google Scholar 

  36. H. Kamerlingh Onnes, W. Tuyn, 1922, (p. 13). However, ordinary lead and uranium lead were found to have the same T c within the accuracy of 0.025 °K.

    Google Scholar 

  37. See, H. Kamerlingh Onnes, 1924, and W. Tuyn, 1929. Cf. K. Mendelssohn, 1964, (p. 8): “I think the reason is that none of us checked the details of the experiment with a lead sphere-which unfortunately was hollow-and we took this result for granted”. Cf. also H. Casimir, 1983, (p. 339).

    Google Scholar 

  38. H. B. G. Casimir, 1977, (p. 170).

    Google Scholar 

  39. F.Bloch, 1980,(p. 27).

    Google Scholar 

  40. F.London, 1950, (p. 142).

    Google Scholar 

  41. See text to footnote 20.

    Google Scholar 

  42. See the discussion on H. Kamerlingh Onnes’ (1924) report, presented by Keesom, esp. (pp. 285–289).

    Google Scholar 

  43. P. H. Van Laer, W. H. Keesom, 1938. See also C. J. Gorter, 1964, esp. (p. 4).

    Google Scholar 

  44. C.J. Gorter, 1964, (p. 4).

    Google Scholar 

  45. W. J. de Haas, J. Voogd, 1931. See also W. J. de Haas, J. Voogd and J. M. Jonker, 1934.

    Google Scholar 

  46. H. B.G.Casimir, 1973, (p. 486).

    Google Scholar 

  47. H. B. G. Casimir, 1977, (p. 178).

    Google Scholar 

  48. C. J. Gorter, H. Casimir, 1934. See also B. S. Chandrasekhar, 1969, (pp. 24–25).

    Google Scholar 

  49. A general proof has been given by Von Laue. See: M. von Laue 1949, pp. 7f.

    Google Scholar 

  50. F. London, H. London, 1935, p. 87.

    Google Scholar 

  51. See L. Brillouin, 1935. See also F. London, 1935, (p. 25) and 1937, (p. 7). For a more formal proof of the theorem see M. R. Schafroth, 1960, (pp. 404–406).

    Google Scholar 

  52. F.London, 1935, (p. 31).

    Google Scholar 

  53. Ibid., (p. 21).

    Google Scholar 

  54. F.London, 1950, (p. 150).

    Google Scholar 

  55. See W. Heisenberg, 1949.

    Google Scholar 

  56. B. B. Goodman, 1953. The Heisenberg-Koppe theory could be interpreted in terms of an energy gap.

    Google Scholar 

  57. F. London, 1949a.

    Google Scholar 

  58. H. Fröhlich, 1961, (p. 7).

    Google Scholar 

  59. H. Fröhlich, 1961, (p. 7). See also H. Fröhlich, 1980.

    Google Scholar 

  60. H. Fröhlich, 1966, (p. 539).

    Google Scholar 

  61. H. Fröhlich, 1966, (p. 551).

    Google Scholar 

  62. See J. Bardeen, 1952.

    Google Scholar 

  63. J. Bardeen, 1963, (p. 25).

    Google Scholar 

  64. P.W.Anderson, 1969, p. 1349.

    Google Scholar 

  65. G. Rickayzen, 1965, (p. 24). Actually, the idea of bound electron pairs emerged for the first time in an attempt by Ogg, 1946, to explain the phase separation and superconductivity of metal-ammonia solutions. See also J. M. Blatt, 1964, (pp. 86–87).

    Google Scholar 

  66. J. Bardeen, 1973c, (p. 31).

    Google Scholar 

  67. J. Bardeen, 1963, (p. 26).

    Google Scholar 

  68. J. Bardeen, 1973c, (pp. 35–36). In (pp. 36–41) of the same paper one can find interesting information on the reception of the B.C.S. theory by the scientific community. For a summary of results obtained after the proposal of the B.C.S. theory, see J. Bardeen and J. R. Schrieffer, 1961. See also J. Bardeen, 1969, and M. J. Buckingham, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gavroglu, K., Goudaroulis, Y. (1989). Superconductivity: the paradox that was not. In: Methodological Aspects of the Development of Low Temperature Physics 1881–1956. Science and Philosophy, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2556-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2556-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7655-5

  • Online ISBN: 978-94-009-2556-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics