Skip to main content

Methods to Study Ras Oncogene-Mediated Induction of the Metastatic Phenotype

  • Chapter
Mechanisms of Carcinogenesis

Part of the book series: Cancer Growth and Progression ((CAGP,volume 2))

  • 79 Accesses

Abstract

Acquisition of the metastatic potential involves participation of various cellular properties, in addition to those required for the transforming process. The metastatic cells must depart from the primary tumor, invade surrounding matrix, intravasate lymphatics and blood vessels, survive mechanical trauma of the circulation, resist cytotoxic immune cells, extravasate, and finally proliferate in a distant organ. Considerable progress has been made in identifying different enzymatic and surface properties of tumor cells that are associated with the metastatic phenotype. However, with the techniques available in the past to study the genetic aspect of metastasis no specific genetic determinants have been found. Most studies have involved assessing the inheritability of the overall metastatic phenotype, using somatic cell hybridization technique where normal cells and tumor cells, or nonmetastatic and metastatic cells have been fused. Most of the cell hybridization studies have demonstrated that both the tumorigenic and the metastatic phenotypes behave as recessive traits (28, 44, 56).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albini A, Iwamoto Y, Kleinman HK, et al: Rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245, 1987

    PubMed  CAS  Google Scholar 

  2. Bernstein SC, Weinberg RA: Expression of the metastatic phenotype in cells transfected with human metastatic tumor DNA. Proc Natl Acad Sci USA 82:1726–1730, 1985

    Article  PubMed  CAS  Google Scholar 

  3. Biedler JL, Spengler BA: A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lines in culture. JNCI 57:683–695, 1976

    PubMed  CAS  Google Scholar 

  4. Bishop JM: Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301–354, 1983

    Article  PubMed  CAS  Google Scholar 

  5. Brodeur GM, Seeger RC, Schwab M, et al: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121–1124, 1984

    Article  PubMed  CAS  Google Scholar 

  6. Capon DJ, Seeburg PH, McGrath JP, et al: Activation of Ki-ras 2 gene in human colon and lung carcinomas by two different point mutations. Nature 304: 507–513, 1983

    Article  PubMed  CAS  Google Scholar 

  7. Coffin JM, Varmus HE, Bishop JM, et al: Proposal for naming host cell-derived inserts in retrovirus genomes. J Virol 40:953–957, 1981

    PubMed  CAS  Google Scholar 

  8. Cooper GM: Cellular transforming genes. Science 218:801–806, 1982

    Article  Google Scholar 

  9. Cowell JK: Double minutes and homogeneously staining regions: gene amplification in mammalian cells. Annu Rev Genet 16:21–59, 1982

    Article  PubMed  CAS  Google Scholar 

  10. Dalla-Favera R, Westin E, Gelman EP, et al: The human onc gene c-myc: structure, expression, and amplification in the human promyelocytic leukemia cell line HL-60. Hematol Bluttransfus 28:247–254, 1983

    CAS  Google Scholar 

  11. DeFeo-Jones D, Scolnick EM, Koller R, et al: Ras related sequences identified and isolated from Saccharomyces cerevisiae. Nature 306:707–709, 1983

    Article  PubMed  CAS  Google Scholar 

  12. Der CJ, Krontiris TG, Cooper GM: Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79:3637–3640, 1982

    Article  PubMed  CAS  Google Scholar 

  13. Doolittle RF, Hunkapiller MW, Hood LE, et al: Simian sarcoma virus one gene v-sis is derived from the gene (or genes) encoding a platelet derived growth factor. Science 221:275–277, 1983

    Article  PubMed  CAS  Google Scholar 

  14. Downward J, Yarden Y, Mayes E, Scarce G, et al: Close similarity of epidermal growth factor and v-erb oncogene protein sequences. Nature 307:521–527, 1984

    Article  PubMed  CAS  Google Scholar 

  15. Easty DM, Easty GC: An in vitro model for studying cell invasiveness. In: Organ Culture in Biochemical Research. M Balls, MA Monnickendam (eds). pp. 379–392. Cambridge Univ. Press, Cambridge, 1976

    Google Scholar 

  16. Eccles SA, Marshall CJ, Vousden K, et al: Enhanced spontaneous metastatic capacity of mammary carcinoma cells transfected with H-ras. In: Treatment of Metastasis: Problems and Prospects. K Hellman, SA Eccles (eds). pp. 385–388. Taylor & Francis, London, 1985

    Google Scholar 

  17. Eva A, Robbins KC, Andersen PR, et al: Cellular genes analogous to retroviral one genes are transcribed in human tumor cells. Nature 295:116–119, 1982

    Article  PubMed  CAS  Google Scholar 

  18. Fidler IJ: The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9:223–227, 1973

    Article  PubMed  CAS  Google Scholar 

  19. Graham FL, van der Eb AJ: A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 53:456–467, 1973

    Article  Google Scholar 

  20. Greig RG, Koestler TP, Trainer DL, et al: Tumorigenic and metastatic properties of “normal” and ras-transfected NIH/ 3T3 cells. Proc Natl Acad sci USA 82:3698–3701, 1985

    Article  PubMed  CAS  Google Scholar 

  21. Hamlyn PH, Rabbitts TH: Translocation joins c-myc and immunoglobulin genes in a Burkitt’s lymphoma revealing a third exon in the c-myc oncogene. Nature 304:135–139, 1983

    Article  PubMed  CAS  Google Scholar 

  22. Hart IR, Fidler IJ: An in vitro quantitative assay for tumor cell invasion. Cancer Res 38:3218–3224, 1978

    PubMed  CAS  Google Scholar 

  23. Hart IR, Talmadge JE, Fidler IJ: Comparative studies on the quantitative analysis of experimental metastatic capacity. Cancer Res 43:400–402, 1983

    PubMed  CAS  Google Scholar 

  24. Jones PA: Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells. Proc Natl Acad sci USA 76:1882–1886, 1979

    Article  PubMed  CAS  Google Scholar 

  25. Kleinman HK, McGarvey ML, Hassell JR, et al: Basement membrane complexes with biological activity. Biochemistry 25:312–318, 1986

    Article  PubMed  CAS  Google Scholar 

  26. Kohl NE, Kanda N, Schreck RR, et al: Transposition and amplification of oncogene-related sequences in human neuroblastoma. Cell 35:359–367, 1983

    Article  PubMed  CAS  Google Scholar 

  27. Land H, Parada LF, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602, 1983

    Article  PubMed  CAS  Google Scholar 

  28. Larizza L, Schirrmacher V: Somatic cell fusion as a source of genetic rearrangement leading to metastatic variants. Cancer Metastasis Rev 3:193–222, 1984

    Article  PubMed  CAS  Google Scholar 

  29. Liotta LA, Saidel GM, Kleinerman J: The significance of hematogenous cell clumps in the metastatic process. Cancer Res 36:889–894, 1976

    PubMed  CAS  Google Scholar 

  30. Liotta LA, Tryggvason K, Garbisa S, et al: Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68, 1980

    Article  PubMed  CAS  Google Scholar 

  31. Little CD, Nau MM, Carney DN, et al: Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196, 1983

    Article  PubMed  CAS  Google Scholar 

  32. Maignan MF: Etude ultrastructurale des interactions entre des cellules normales ou malignes et le sac vitellin de Rat, explante in vitro. Biol Cellulaire 35:229–232, 1979

    Google Scholar 

  33. Mareel M, De Ridder L, De Brabander M, et al: Characterization of spontaneous, chemical, and viral transformants of a C3H/3T3-type mouse cell line by transplantation into young chick blastoderms. JNCI 54:923–929, 1975

    PubMed  CAS  Google Scholar 

  34. Mareel M, Kint J, Meyvish C: Methods of study of the invasion of malignant C3H-mouse fibroblasts into embryonic chick heart in vitro. Virch Arch (Cell Pathol) 30:95–111, 1979

    CAS  Google Scholar 

  35. Muller R, Verma IM: Expression of cellular oncogenes. Curr Top Microbiol Immunol 112:73–115, 1984

    PubMed  CAS  Google Scholar 

  36. Murray MJ, Cunningham JM, Parada LF, et al: The HL-60 transforming sequence: a ras oncogene coexisting with altered myc genes in hematopoietic tumors. Cell 33:749–757, 1983

    Article  PubMed  CAS  Google Scholar 

  37. Muschel RJ, Williams JE, Lowy DR, et al: Harvey ras induction of metastatic potential depends upon oncogene activation and the type of recipient cells. Am J Pathol 121:1–8, 1985

    PubMed  CAS  Google Scholar 

  38. Nakano H, Yamamoto F, Neville C, et al: Isolation of transforming sequences of two human lung carcinomas: structural and functional analysis of the activated c-K-ras oncogenes. Proc Natl Acad sci USA 81:71–75, 1984

    Article  CAS  Google Scholar 

  39. Noguchi PD, Johnson JB, O’Donnell R, et al: Chick embryonic skin as a rapid organ culture assay for cellular neoplasia. Science 199:980–983, 1978

    Article  PubMed  CAS  Google Scholar 

  40. Nowell P, Finan J, Dalla Favera R, et al: Association of amplified oncogene c-myc with an abnormally banded chromosome 8 in a human leukemia cell line. Nature 306:494–497, 1983

    Article  PubMed  CAS  Google Scholar 

  41. Pauli BU, Anderson SN, Memoli VA, et al: Development of an in vitro and in vivo epithelial tumor model for the study of invasion. Cancer Res 40:4571–4580, 1980

    PubMed  CAS  Google Scholar 

  42. Poste G, Doll J, Hart IR, et al: In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res 40:1636–1644, 1980

    PubMed  CAS  Google Scholar 

  43. Pourreau-Schneider N, Felix H, Haemmrli G, et al: The role of cellular locomotion in leukemic infiltration: An organ culture study on penetration of L5222 rat leukemia cells into chick embryomesonephros. Virch Arch B (Cell Pathol) 23:257–264, 1977

    CAS  Google Scholar 

  44. Ramshaw IA, Carlsen S, Wang HC, et al: The use of cell fusion to analyze factors involved in tumor cell metastasis. Int J Cancer 32:471–478, 1983

    Article  PubMed  CAS  Google Scholar 

  45. Reddy EP, Reynolds RK, Santos E, et al: A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152, 1982

    Article  PubMed  CAS  Google Scholar 

  46. Russo RG, Thorgeirsson UP, Liotta LA: In vitro quantitative assay of invasion using human amnion. In: Tumor Invasion and Metastasis. LA Liotta, Hart IR (eds). pp. 173–187. Martinus Nijhoff, The Hague, 1982

    Chapter  Google Scholar 

  47. Saksela K, Bergh J, Lehto VP, et al: Amplification of the c-myc oncogene in a subpopulation of human small cell lung cancer. Cancer Res 45:1823–1827, 1985

    PubMed  CAS  Google Scholar 

  48. Santos E, Reddy EP, Pulciani S, et al: Spontaneous activation of a human proto-oncogene. Proc Natl Acad sci USA 80:4679–4683, 1983

    Article  PubMed  CAS  Google Scholar 

  49. Scher C, Haudenschild C, Klagsbrun M: The chick chorioallantoic membrane as a model system for the study of tissue invasion by viral transformed cells. Cell 8:373–382, 1976

    Article  PubMed  CAS  Google Scholar 

  50. Schirrmacher V, Shantz G, Claurer K, et al: Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. I. Tumor invasiveness in vitro and metastases formation in vivo. Int J Cancer 23:233–244, 1979

    Article  PubMed  CAS  Google Scholar 

  51. Schleich AB, Frich M, Mayer A: Patterns of invasive growth in vitro. Human decidua graviditatis confronted with established human cell lines and primary human explants. JNCI 56:221–237, 1976.

    PubMed  CAS  Google Scholar 

  52. Shibuya M, Yokota J, Ueyama Y: Amplification and expression of a cellular oncogene (c-myc) in human gastric adenocarcinoma cells. Mol Cell Biol 5:414–418, 1985

    PubMed  CAS  Google Scholar 

  53. Shih C, Padhy LC, Murray MJ, et al: Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290:261–264, 1981

    Article  PubMed  CAS  Google Scholar 

  54. Shilo BZ, Weinberg RA: DNA sequences homologous to vertebrate oncogenes are conserved in Drosophila melanogas-ter. Proc Natl Acad sci USA 78:6789–6792, 1981

    Article  PubMed  CAS  Google Scholar 

  55. Shimizu K, Birnbaum D, Ruley MA, et al: Straucture of the Ki-ras gene of the human lung carcinoma cell calu-1. Nature 304:497–500, 1983

    Article  PubMed  CAS  Google Scholar 

  56. Straus DS, Jonasson J, Harris H: Growth in vitro of tumor cell x fibroblast hybrids in which malignancy is suppressed. J Cell sci 25:73–86, 1976

    Google Scholar 

  57. Sukumar S, Notario V, Martin-Zanca D, et al: Induction of mammary carcinomas in rats by nitroso-methyl-urea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306:658–661, 1983

    Article  PubMed  CAS  Google Scholar 

  58. Taparowsky E, Shimizu K, Goldfarb M, et al: Structure and activation of the human N-ras gene. Cell 34:581–586, 1983

    Article  PubMed  CAS  Google Scholar 

  59. Thorgeirsson UP, Liotta LA, Kalebic T, et al: Effect of natural protease inhibitors and a chemoattractant on tumor cell invasion in vitro. JNCI 69:1049–1054, 1982

    PubMed  CAS  Google Scholar 

  60. Thorgeirsson UP, Turpeenniemi-Hujanen T, Williams JE, et al: NIH/3T3 cells transfected with human tumor DNA containing activated ras oncogenes express the metastatic phenotype in nude mice. Mol Cell Biol 5:259–262, 1985a

    PubMed  CAS  Google Scholar 

  61. Thorgeirsson UP, Turpeenniemi-Hujanen T, Talmadge JE, et al: Expression of oncogenes in cancer metastasis. In: Cancer Metastasis: Experimental and Clinical Strategies. Welch DR, Bhuyan BK, Liotta LA (eds). pp. 77–93. Progress in Clinical and Biological Research Vol 212. Alan R. Liss, Inc., New York, 1986

    Google Scholar 

  62. Tickle C, Crawley A, Goodman M: Cell movement and the mechanism of invasiveness: A survey of the behaviour of some normal and malignant cells implanted into the developing chick wing bud. J Cell sci 31:293–322, 1978

    PubMed  CAS  Google Scholar 

  63. Turpeenniemi-Hujanen T, Thorgeirsson UP, Hart IR, et al: Expression of collagenase IV (basement membrane collagenase) activity in murine tumor cells hybrids which differ in metastatic potential. JNCI 75:99–103, 1985

    PubMed  CAS  Google Scholar 

  64. Waterfield MD, Scarce GT, Whittle N, et al: Platelet derived growth factor is structurally related to the putative transforming protein p28 sis of simian sarcoma virus. Nature 304:35–39, 1983

    Article  PubMed  CAS  Google Scholar 

  65. Westin EH, Wong-Staal F, Gelmann EP, et al: Expression of cellular homologues of retroviral one genes in human hematopoietic cells. Proc Natl Acad sci USA 79:2490–2494, 1982

    Article  PubMed  CAS  Google Scholar 

  66. Wolman SR: Karyotypic progression in human tumors. Cancer Met Rev 2:257–293, 1983

    Article  CAS  Google Scholar 

  67. Yuasa Y, Srivastava SK, Dunn CY, et al: Acquisition of transforming properties by alternative point mutations with c-bas/has human proto-oncogene. Nature 303:775–779, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Thorgeirsson, U.P., Turpeenniemi-Hujanen, T., Ballin, M., Liotta, L.A. (1989). Methods to Study Ras Oncogene-Mediated Induction of the Metastatic Phenotype. In: Weisburger, E.K. (eds) Mechanisms of Carcinogenesis. Cancer Growth and Progression, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2526-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2526-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7641-8

  • Online ISBN: 978-94-009-2526-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics