Skip to main content

Oncogenes and their Encoded Products as Targets for Cancer Therapy

  • Chapter
Book cover Mechanisms of Carcinogenesis

Part of the book series: Cancer Growth and Progression ((CAGP,volume 2))

Abstract

Recent advances in the biochemical and molecular understanding of tumor cell function are providing new insights into the alterations in growth regulation which underlie the aberrant proliferation seen in neoplastic disease. Perhaps the best example of these insights comes from the “rediscovery” of oncogenes; these genes represent normal cellular DNA sequences (c-onc or proto-onc genes) which, through particular activating events in carcinogenesis, become “oncogenic” and capable of triggering malignant transformation (reviewed in Varmus (85)). Many of these genes had earlier been described as the transforming (v-onc) genes of RNA tumor viruses (5). Even though the exact details of oncogene regulation and function have yet to be fully defined, early studies have begun to suggest new, unifying themes for normal and abnormal cellular growth control (54, 86).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins B, Leutz A, Graf T: Autocrine growth induced by src-related oncogenes in transformed chicken myeloid cells. Cell 39:439–445, 1984

    Article  PubMed  CAS  Google Scholar 

  2. Balmain A, Pragnell JB: Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey ras oncogene. Nature 303:72–74, 1983

    Article  PubMed  CAS  Google Scholar 

  3. Bechade C, Calothy G, Pressac P, Martin P, Coll J, Denhez F, Saule S, Ghysdael J, Stehelin D: Induction of proliferation or transformation of neuroretina cells by the mil and myc viral oncogenes. Nature 316:559–562, 1985

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein SC, Weinberg RA: Expression of the metastatic phenotype in cells transfected with human metastatic tumor DNA. Proc Natl Acad Sci 82:1726–1730, 1985

    Article  PubMed  CAS  Google Scholar 

  5. Bishop JM: Cellular oncogenes and retroviruses. Ann Rev Biochem 52:301–354, 1983

    Article  PubMed  CAS  Google Scholar 

  6. Bishop JM, Varmus HE: Functions and origins of retroviral transforming genes. In Molecular Biology of Tumor Viruses Part III. RNA Tumor Viruses. Weiss B, Teich N, Varmus H, Coffin JM, Eds. Cold Spring Harbor, NY: Cold Spring Harbor Press, pp. 999–1108, 1982

    Google Scholar 

  7. Bos JL, Toksoz D, Marshall CJ, Verlaan-deVries M, Veeneman GH, van der Eb AJ, van Boom JH, Janssen JW, Steen-voorden ACM: Amino acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukemia.13 Nature 315:726–730, 1985

    Article  CAS  Google Scholar 

  8. Braun S, Raymond WE, Racker E: Synthetic tyrosine polymers as substrates and inhibitors of tyrosine-specific protein kinases. J Biol Chem 259:2051–2054, 1984

    PubMed  CAS  Google Scholar 

  9. Brodeur G, Seeger C, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated neuroblastoma correlates with advanced disease stage. Science 224:1121–1124, 1984

    Article  PubMed  CAS  Google Scholar 

  10. Chang EH, Furth ME, Scolnick EM, Lowy DR: Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature 297:479–483, 1982

    Article  PubMed  CAS  Google Scholar 

  11. Coleman J, Green PJ, Inouye M: The use of RNAs complementary to specific mRNAs to regulate the expression of individual genes. Cell 37:429–436, 1984

    Article  PubMed  CAS  Google Scholar 

  12. Collett MS, Purchio AF, Erikson RL: Avian sarcoma virus-transforming protein, pp60 src, shows protein kinase activity specific for tyrosine. Nature 285:167–169, 1980

    Article  PubMed  CAS  Google Scholar 

  13. Cooper GM: Cellular transforming genes. Science 218:801–806, 1982

    Article  Google Scholar 

  14. Cooper GM, Lane M-A: Cellular transforming genes and oncogenesis. Biochim Biophys Acta 738:9–20, 1984

    PubMed  CAS  Google Scholar 

  15. Cooper JA, Hunter T: Identification and characterization of cellular targets for tyrosine protein kinase. J Biol Chem 258:1108–1115, 1983

    PubMed  CAS  Google Scholar 

  16. Cuttita F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD: Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826, 1985

    Article  Google Scholar 

  17. DeFeo-Jones D, Scolnick EM, Koller R, Dhar R: Ras-related gene sequences identified and isolated from Saccharomyces cerevisae. Nature 306:707–709, 1983

    Article  PubMed  CAS  Google Scholar 

  18. Derynk R, Roberts AB, Winkler ME, Chen EY, Goeddel DV: Human transforming growth factor-alpha: precursor structure and expression in E. coli. Cell 38:287–297, 1984

    Google Scholar 

  19. Deuel TF, Huang JS: Roles of growth factor activities in oncogenesis. Blood 64:951–958, 1984

    PubMed  CAS  Google Scholar 

  20. Doolittle RF, Hunkapiller MW, Hood LE, DeVare SG, Robbins KC, Aaronson SA, Antoniades HN: Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221:275–276, 1983

    Article  PubMed  CAS  Google Scholar 

  21. Ellison MJ, Kelleher RJ, Rich A: Thermal regulation of betagalactosidase synthesis using anti-sense RNA directed against the coding portion of the mRNA. J Biol Chem 260:9085–9087, 1985

    PubMed  CAS  Google Scholar 

  22. Fasano O, Aldrich T, Tamanoi F, Taparowsky E, Furth M, Wigler M: Analysis of the transforming potential of the human H-ras gene by random mutagenesis. Proc Natl Acad Sci 81:4008–4012, 1984

    Article  PubMed  CAS  Google Scholar 

  23. Feramisco JR, Gross M, Kamata T, Rosenberg M, Sweet RW: Micro-injection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38:109–117, 1984

    Article  PubMed  CAS  Google Scholar 

  24. Feramisco JR, Clark R, Wong G, Arnheim N, Milley R, McCormick F: Transient reversion of ras oncogene-induced cell transformation by antibodies specific for amino acid 12 of ras protein. Nature 314:639–642, 1985

    Article  PubMed  CAS  Google Scholar 

  25. Fischinger PJ, DeVita VT: Governance of science at the National Cancer Institute: perceptions and opportunities in oncogene research. Cancer Res 44:4693–4696, 1984

    PubMed  CAS  Google Scholar 

  26. Gibbs JB, Sigal IS, Poe M, Scolnick EM: Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci 81:5704–5708, 1984

    Article  PubMed  CAS  Google Scholar 

  27. Gilman AG: G proteins and dual control of adenylate cyclase. Cell 36:577–579, 1984

    Article  PubMed  CAS  Google Scholar 

  28. Greig RG, Koestler TD, Trainer DL, Corwin SP, Miles L, Kline T, Sweet R, Yokoyama S, Poste G: Tumorigenic and metastatic properties of “normal” and ras-infected NIH/3T3 cells. Proc Natl Acad Sci 82:3698–3701, 1985

    Article  PubMed  CAS  Google Scholar 

  29. Groffen J, Stephenson JR, Heisterkamp N, deKlein A, Bartram CR, Grosveld G: Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99, 1984

    Article  PubMed  CAS  Google Scholar 

  30. Hanafusa H, Iba H, Takeya T, Cross FR: Transforming activity of the c-src gene. In Cancer Cells 2: Viral Genes and Cancer Genes. Vande Woude GF, Levine AJ, Topp WC, Watson JD, Eds. Cold Spring Harbor, NY: Cold Spring Harbor Press, pp. 1–7, 1984

    Google Scholar 

  31. Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, deKlein A, Bartram CR, Grosveld G: Localization of the c-abl oncogene adjacent to a translocation breakpoint in chronic myelocytic leukaemia. Nature 306:239–242, 1983

    Article  PubMed  CAS  Google Scholar 

  32. Hokin LE: Receptors and phosphoinositide-generated second messengers. Ann Rev Biochem 54:205–235, 1985

    Article  PubMed  CAS  Google Scholar 

  33. Horan Hand P, Thor A, Wunderlich D, Murano R, Caruso A, Schlom J: Monoclonal antibodies of predefined specificity detect activated ras gene expression in human mammary and colon carcinomas. Proc Natl Acad Sci 81:5227–5231, 1984

    Article  Google Scholar 

  34. Huang AL, Ostrowski MG, Berard P, Hager GL: Glucocorticoid regulation of the Ha-MuSV p21 gene conferred by sequences from mouse mammary tumor virus. Cell 27:245–255, 1981

    Article  PubMed  CAS  Google Scholar 

  35. Hunter T, Cooper JA: Role of tyrosine phosphorylation in malignant transformation by viruses and in cellular growth control. Prog Nuc Acid Res Molec Biol 29:221–232, 1983

    Article  CAS  Google Scholar 

  36. Hunter T, Cooper JA: Protein-tyrosine kinases. Ann Rev Biochem 54:897–930, 1985

    Article  PubMed  CAS  Google Scholar 

  37. Hunter T, Sefton BM: Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci 77:1311–1315, 1980

    Article  PubMed  CAS  Google Scholar 

  38. Hurley JB, Simon MI, Taplow DB, Robishaw JD, Gilman AG: Homologies between signal transducing G proteins and ras gene products. Science 226:860–862, 1984

    Article  PubMed  CAS  Google Scholar 

  39. Iba H, Takeya T, Cross FR, Hanafusa T, Hanafusa H: Rous sarcoma virus variants that carry the cellular src gene instead of the viral src gene cannot transform chicken embryo fibroblasts. Proc Natl Acad Sci 81:4424–4428, 1984

    Article  PubMed  CAS  Google Scholar 

  40. Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, Broach J, Wigler M: Functional homology of mammalian and yeast RAS genes. Cell 40:19–26, 1985

    Article  PubMed  CAS  Google Scholar 

  41. Klein G: Specific chromosomal translocations and the genesis of B cell derived tumors in mice and men. Cell 32:311–315, 1983

    Article  PubMed  CAS  Google Scholar 

  42. Kohl NE, Kanda N, Schreck RR, Bunns G, Latt SA, Gilbert F, Alt FW: Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35:359–367, 1984

    Article  Google Scholar 

  43. Konopka JB, Witte ON: Activation of the abl oncogene in murine and human leukemias. Biochim Biophys Acta 823:1–17, 1985

    PubMed  CAS  Google Scholar 

  44. Konopka JB, Watanabe SM, Witte ON: An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37:1035–1042, 1984

    Article  PubMed  CAS  Google Scholar 

  45. Konopka JB, Watanabe SM, Singer JW, Collins SJ, Witte ON: Cell lines and clinical isolates derived from Ph1 -positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad sci 82:1810–1814, 1985

    Article  PubMed  CAS  Google Scholar 

  46. Kris RM, Lieberman TA, Avivi A, Schlessinger J: Growth factors, growth-factor receptors and oncogenes. Biotechnology 3:135–140, 1985

    Article  CAS  Google Scholar 

  47. Land H, Parada LF, Weinberg RA: Cellular oncogenes and multistep carcinogenesis. Science 222:771–778, 1983a

    Article  PubMed  CAS  Google Scholar 

  48. Land H, Parada LF, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–601, 1983b

    Article  PubMed  CAS  Google Scholar 

  49. Lang RA, Metcalf D, Gough NM, Dunn AR, Gonda TJ: Expression of a hemopoietic growth factor cDNA in a factordependent cell line results in autonomous growth and tumorigenicity. Cell 43:531–542, 1985

    Article  PubMed  CAS  Google Scholar 

  50. Lax I, Kris R, Sasson I, Ullrich A, Hayman MJ, Beug H, Schlessinger J: Activation of c-erb B in avian leukosis virus-induced erythroblastosis leads to the expression of a truncated EGF receptor kinase. EMBO J 4:3179–3182, 1985

    PubMed  CAS  Google Scholar 

  51. Leder P, Bailey J, Lenoir G, Moulding C, Murphy W, Potter H, Stewart T, Taub R: Translocations among antibody genes in human cancer. Science 222:765–771, 1984

    Article  Google Scholar 

  52. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD: Amplification and expression of the human c-myc oncogene in human lung cancer cell lines. Nature 306:194–196, 1983

    Article  PubMed  CAS  Google Scholar 

  53. Manne V, Bekesi E, Kung H-F: Ha-ras proteins exhibit GTPase activity: point mutations that activate Ha-ras gene products result in decreased GTPase activity. Proc Natl Acad sci 82:376–380, 1985

    Article  PubMed  CAS  Google Scholar 

  54. Marx JL: What do oncogenes do? Science 223:673–676, 1984

    Article  PubMed  CAS  Google Scholar 

  55. McCormick F, Clark BFC, laCour TFM, Kjeldgaard M, Norskov-Lauritsen L, Nyborg J: A model for the tertiary structure of p21, the product of the ras oncogene. Science 230:78–82, 1985

    Article  PubMed  CAS  Google Scholar 

  56. McGrath P, Capon DJ, Goeddel DV, Levinson AD: Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310:644–649, 1984

    Article  PubMed  CAS  Google Scholar 

  57. Miller AD, Curran T, Verma IM: c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36:51–62, 1984

    Article  PubMed  CAS  Google Scholar 

  58. Montgomery KT, Biedler JL, Spengler BA, Melera PW: Specific DNA sequence amplification in human neuroblastoma cells. Proc Natl Acad sci 80:5724–5728, 1983

    Article  PubMed  CAS  Google Scholar 

  59. Mulcahy LS, Smith MR, Stacey DW: Requirement for ras proto-oncogene function during serum-stimulated growth of NIH3T3 cells. Nature 313:241–243, 1985

    Article  PubMed  CAS  Google Scholar 

  60. Muschel RJ, Williams JE, Lowy DR, Liotta LA: Harvey ras induction of metastatic potential depends upon oncogene activation and the type of recipient cell. Am J Pathol 121:1–8, 1985

    PubMed  CAS  Google Scholar 

  61. Newbold R: Mutant ras protein and cell transformation. Nature 310:628–629, 1984

    Article  PubMed  CAS  Google Scholar 

  62. Nishizawa M, Mayer BJ, Takeya T, Yamamoto T, Toyoshima K, Hanafusa H, Kawai S: Two independent mutations are required for temperature-sensitive cell transformation by a Rous sarcoma virus temperature sensitive mutant. J Virol 56:743–749, 1985

    PubMed  CAS  Google Scholar 

  63. Parker RC, Swanstrom R, Varmus HE, Bishop JM: Transduction and alteration of a cellular gene (c-src) created an RNA tumor virus: the genesis of Rous sarcoma virus. In Cancer Cells 2: Oncogenes and Viral Genes. VandeWoude GF, Levine AJ, Topp WC, Watson JD, Eds. Cold Spring Harbor, NY: Cold Spring Harbor Press, pp. 19–25, 1984

    Google Scholar 

  64. Perucho M, Goldfarb M, Shimizu K, Lama C, Fogh J, Wigler M: Human tumor derived cell lines contain common and different transforming genes. Cell 27:467–476, 1981

    Article  PubMed  CAS  Google Scholar 

  65. Powers S, Kataoka T, Fasano O, Goldfarb M, Strathern J, Broach J, Wigler M: Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36:607–612, 1984

    Article  PubMed  CAS  Google Scholar 

  66. Roberts AB, Frolik CA, Anzano NA, Sporn MB: Transforming growth factors from neoplastic and nonneoplastic tissues. Fed Proc 42:2621–2626, 1983

    PubMed  CAS  Google Scholar 

  67. Robertson M: Paradox and paradigm: the message and meaning of myc. Nature 306:733–736, 1983

    Article  PubMed  CAS  Google Scholar 

  68. Rosenberg UB, Preiss A, Seifert E, Jackie H, Knipple DC: Production of phenocopies by Krupple antisense RNA injection into Drosophila embryos. Nature 313:703–705, 1985

    Article  PubMed  CAS  Google Scholar 

  69. Rowley JD: Human oncogene locations and chromosomal aberrations. Nature 301:290–291, 1983

    Article  PubMed  CAS  Google Scholar 

  70. Ruley HE: Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304:602–606, 1983

    Article  PubMed  CAS  Google Scholar 

  71. Sager R, Tanaka K, Lau CC, Ebine Y, Anisowicz A: Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc Natl Acad sci 80:7601–7605, 1983

    Article  PubMed  CAS  Google Scholar 

  72. Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop JM: Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad sci 81:4940–4944, 1984

    Article  PubMed  CAS  Google Scholar 

  73. Shtivelman E, Lifshitz B, Gale RP, Canaani E: Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315:550–554, 1985

    Article  PubMed  CAS  Google Scholar 

  74. Slamon DJ, deKernion JB, Verma IM, Cline MJ: Expression of cellular oncogenes in human malignancies. Science 224:256–262, 1984

    Article  PubMed  CAS  Google Scholar 

  75. Spandidos DA, Kerr IB: Elevated expression of the human ras oncogene family in premalignant and malignant tumours of the colorectum. Brit J Cancer 49:681–688, 1984

    Article  PubMed  CAS  Google Scholar 

  76. Spandidos DA, Wilkie NM: Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature 310:469–475, 1984

    Article  PubMed  CAS  Google Scholar 

  77. Sporn MB, Todaro GJ: Autocrine secretion and malignant transformation of cells. N Engl J Med 303:878–880, 1980

    Article  PubMed  CAS  Google Scholar 

  78. Stacey DW, Kung H-F: Transformation of NIH3T3 cells by microinjection of Ha-ras p21 protein. Nature 310:508–511, 1984

    Article  PubMed  CAS  Google Scholar 

  79. Stam K, Heisterkamp N, Grosveld G, DeKlein A, Verma RS, Coleman S, Dosik H, Groffen J: Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N Engl J Med 313:1430–1433, 1985

    Article  Google Scholar 

  80. Sukumar S, Notario V, Martin-Zanca D, Barbacid M: Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306:658–661, 1983

    Article  PubMed  CAS  Google Scholar 

  81. Sweet RW, Capon DJ, Goeddel DV, Levinson AD: Comparative biochemical properties of normal and activated ras p21 proteins. Nature 310:644–649, 1984

    Article  Google Scholar 

  82. Thorgeirsson UP, Turpeenniemi-Hujanen J, Williams JE, Westin EH, Heilman CA, Talmadge JE, Liotta LA: NIH-3T3 cells transfected with human tumor DNA containing activated ras oncogenes express the metastatic phenotype in nude mice. Molec Cell Biol 5:259–262, 1985

    PubMed  CAS  Google Scholar 

  83. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M: In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36, 1985

    Article  PubMed  CAS  Google Scholar 

  84. VanDyke MM, Dervan PB: Echinomycin binding sites on DNA. Science 225:1122–1127, 1984

    Article  CAS  Google Scholar 

  85. Varmus HE: The molecular genetics of cellular oncogenes. Ann Rev Genet 18:553–612, 1984

    Article  PubMed  CAS  Google Scholar 

  86. Weinberg RA: The actions of oncogenes in the cytoplasm and nucleus. Science 230:770–776, 1985

    Article  PubMed  CAS  Google Scholar 

  87. Wong TW, Goldberg AR: In vitro phosphorylation of angiotensin analogs by tyrosyl protein kinases. J Biol Chem 258:1022–1025, 1983

    PubMed  CAS  Google Scholar 

  88. Yoakum GH, Lechner JF, Gabrielson GW, Korba BE, Malan-Shibley L, Willey JC, Valerio MG, Shamsuddin AM, Trump BF, Harris CC: Transformation of human bronchial epithelial cells transfected by Harvey ras oncogene. Science 227:1174–1179, 1985

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Slate, D.L. (1989). Oncogenes and their Encoded Products as Targets for Cancer Therapy. In: Weisburger, E.K. (eds) Mechanisms of Carcinogenesis. Cancer Growth and Progression, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2526-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2526-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7641-8

  • Online ISBN: 978-94-009-2526-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics