Skip to main content

Towards Realistic Model Intermolecular Potentials

  • Chapter
Computer Modelling of Fluids Polymers and Solids

Part of the book series: NATO ASI Series ((ASIC,volume 293))

Abstract

The realism of a computer simulation is usually limited by the accuracy of the fundamental scientific input into the calculation: the model intermolecular potential. We examine the problems in establishing accurate model potentials, by considering the physical origins of intermolecular forces, highlighting the approximations which are usually made in the potentials used in simulations, and discussing the problems in quantifying intermolecular potentials by ab initio methods and by fitting to experimental data. This emphasises the importance of choosing a realistic functional form for the potential. The isotropic atom-atom model potential, which is usually used for modelling polyatomic molecules, is contrasted with the recently developed anisotropic site-site approach to designing model potentials. The electrostatic interaction can be represented very accurately within the anisotropic site-site formalism, by the use of an ab initio based distributed multipole model. We show how empirical anisotropic site-site potentials have been used to great effect in a Molecular Dynamics simulation of liquid chlorine and Monte Carlo simulations of three condensed phases of benzene. Thus we can expect that the use of such model potentials will lead to more realistic simulations in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces, Clarendon press, Oxford., 1981.

    Google Scholar 

  2. B. M. Axilrod and E. Teller,‘Interaction of van der Waals type between three atoms’, J. Chem. Phys., 11, 299 (1943).

    Article  ADS  Google Scholar 

  3. P. A. Monson and M. Rigby,‘Non-additive three body contribution to the lattice energies of nitrogen and carbon dioxide’, Molec. Phys., 39, 1163 (1980).

    Article  ADS  Google Scholar 

  4. A. D. Buckingham,‘Permanent and induced molecular moments and long range intermolecular forces’, Adv. Chem. Phys., 12, 107 (1967).

    Article  Google Scholar 

  5. A. J. Stone and R. J. A. Tough,‘Spherical tensor theory of long range intermolecular forces’, Chem. Phys. Letts., 110, 123 (1984).

    Article  ADS  Google Scholar 

  6. A.J. Stone, ‘Intermolecular Forces’ in Molecular Liquids Dynamics and Interactions, A.J. Barnes, W.J. Orville-Thomas and J. Yarwood, eds., NATO ASI Series C 135, 1984.

    Google Scholar 

  7. A. J. Stone and S. L. Price,‘Some new ideas in the theory of intermolecular forces: anisotropic atom-atom potentials’, J. Phys. Chem, 92, 3325 (1988).

    Article  Google Scholar 

  8. S. L. Price, A. J. Stone and M. Alderton,‘Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry’, Molec. Phys., 52, 987 (1984).

    Article  ADS  Google Scholar 

  9. Gray C.G. and Gubbins K.E., Theory of Molecular Fluids Vol. 1, Oxford, 1984.

    Google Scholar 

  10. A. J. Stone,‘Distributed polarizabilities’, Molec. Phys., 56, 1065 (1985).

    Article  ADS  Google Scholar 

  11. C.S. Tong, ‘Anisotropy in repulsion and dispersion forces between atoms in molecules’, Ph.D. Thesis, University of Cambridge (1988).

    Google Scholar 

  12. E.A. Mason and L. Monchick,‘Methods for the determination of intermolecular forces’, Adv. Chem. Phys., 12, 329 (1967).

    Article  Google Scholar 

  13. H. J. Böhm and R. Ahlrichs,‘The N2—N2 interaction A theoretical investigation’, Molec. Phys., 55, 1159 (1985).

    Article  ADS  Google Scholar 

  14. K. T. Tang and J. P. Toennies,‘An improved model for the van der Waals potential based on universal damping functions for the dispersion coefficients’, J. Chem. Phys., 80, 3726 (1984).

    Article  ADS  Google Scholar 

  15. P. J. Knowles and W. J. Meath,‘A separable method for the calculation of dispersion and induction energy damping functions with applications to the dimers arising from He, Ne and HF’, Molec. Phys., 60, 1143 (1987).

    Article  ADS  Google Scholar 

  16. M. S. H. Ling and M. Rigby,‘Towards an intermolecular potential for nitrogen’, Molec. Phys., 51, 855 (1984).

    Article  ADS  Google Scholar 

  17. M. Rigby, E.B. Smith, W.A. Wakeham and G.C. Maitland, The forces between molecules, Clarendon press, Oxford., 1986.

    Google Scholar 

  18. J.A. Barker, R.A. Fisher and R.O. Watts,‘Liquid argon: Monte-Carlo and Molecular Dynamics calculations’, Molec. Phys., 21, 657 (1971).

    Article  ADS  Google Scholar 

  19. P. M. Rodger, A. J. Stone and D. J. Tildesley,‘The intermolecular potential of chlorine: a three phase study’, Molec. Phys., 63, 173 (1988).

    Article  ADS  Google Scholar 

  20. D. J. Tildesley and P. A. Madden,‘Time correlation functions for a model of liquid carbon disulphide’, Molec. Phys., 48, 129 (1983).

    Article  ADS  Google Scholar 

  21. P. J. Grout and Leech J. W.,‘Lattice dynamics of crystalline carbon disulphide revisited’, Molec. Phys., 45, 51 (1982).

    Article  ADS  Google Scholar 

  22. P. J. Grout and Leech J. W.,‘Intermolecular modes of solid carbon disulfide’, J. Phys. C, 15, L1083 (1982).

    Article  ADS  Google Scholar 

  23. R. W. Impey and M. L. Klein,‘Intermolecular force models and the crystal structure of carbon disulphide’, Chem. Phys. Letts., 103, 143 (1983).

    Article  ADS  Google Scholar 

  24. S. Nose and M. L. Klein,‘Constant pressure molecular dynamics for molecular systems’, Molec. Phys., 50, 1055 (1983).

    Article  ADS  Google Scholar 

  25. E. Burgos and R. Righini,‘The effects of anisotropic atom-atom interactions on the crystal structure and lattice dynamics of solid CS2’, Chem. Phys. Letts., 96, 584 (1983).

    Article  ADS  Google Scholar 

  26. U. Burkert and N.L. Allinger, Molecular Mechanics, ACS Monograph 177, 1982.

    Google Scholar 

  27. S. J. Harris, S. E. Novick, J. S. Winn and W. Klemperer,‘(Cl2)2: A polar molecule’, J. Chem. Phys., 61, 3866 (1974).

    Article  ADS  Google Scholar 

  28. A. J. Pertsin and A. I. Kitaigorodsky, The Atom-Atom Potential Method, Springer Series in Chemical Physics, vol 43, 1987.

    Google Scholar 

  29. E. D. Stevens,‘Experimental electron density distribution of molecular chlorine’, Molec. Phys., 37, 27 (1979).

    Article  ADS  Google Scholar 

  30. G. Moss and D. Feil,‘Electrostatic molecular interactions from X-ray diffraction data. I Development of method: test on pyrazine’, Acta Cryst. A, 37, 414 (1981).

    Article  Google Scholar 

  31. S. L. Price and A. J. Stone,‘The electrostatic interactions in van der Waals complexes involving aromatic molecules’, J. Chem. Phys., 86, 2859 (1987).

    Article  ADS  Google Scholar 

  32. M. J. Alderton,‘Distributed Multipole Analysis’, Ph.D. Thesis, University of Cambridge, (1983).

    Google Scholar 

  33. A. J. Stone and M. Alderton,‘Distributed multipole analysis Methods and applications’, Molec. Phys., 56, 1047 (1985).

    Article  ADS  Google Scholar 

  34. W.A. Sokalski and A. Sawaryn,‘Correlated molecular and cumulative atomic multipole moments’, J. Chem. Phys., 87, 526 (1987).

    Article  ADS  Google Scholar 

  35. F. Vigné-Maeder and P. Claverie,‘The exact multicenter multipolar part of a charge distribution and its simplified representation’, J. Chem. Phys., 88, 4934 (1988).

    Article  ADS  Google Scholar 

  36. J.F. Rico, J.R. Alvárez-Collado and M. Paniagua,‘1.1.1. electrostatic description of molecular systems’, Molec. Phys., 56, 1145 (1985).

    Article  ADS  Google Scholar 

  37. A. Pullman and D. Perahia,‘Hydration scheme of uracil and cytosine’, Theor. Chim. Acta, 48, 29 (1978).

    Article  Google Scholar 

  38. D. L. Cooper and N. C. J. Stutchbury,‘Distributed multipole analysis from charge partitioning by zero-flux surfaces: the structure of HF complexes’, Chem. Phys. Letts., 120, 167 (1985).

    Article  ADS  Google Scholar 

  39. Z. Berkovitch-Yellin and L. Leiserowitz,‘The role of Coulomb forces in the crystal packing of amides. A study based on experimental electron densities’, J. Amer. Chem. Soc., 102, 7677 (1980).

    Article  Google Scholar 

  40. R. D. Amos, CADPAC: The Cambridge Analytical Derivatives Package, publication CCP1/84/4, S.E.R.C. Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England, 1984.

    Google Scholar 

  41. S. L. Price,‘A distributed multipole analysis of the charge densities of some aromatic hydrocarbons’, Chem. Phys. Letts., 114, 359 (1985).

    Article  ADS  Google Scholar 

  42. S. L. Price and A. J. Stone,‘A distributed multipole analysis of the charge densities of the azabenzene molecules’, Chem. Phys. Letts., 98, 419 (1983).

    Article  ADS  Google Scholar 

  43. S. L. Price, R. J. Harrison and M. F. Guest, ‘An ab initio distributed multipole study of the electrostatic potential around a undecapeptide cyclosporin derivative and a comparison with point charge electrostatic models’, J. Comput. Chem., in press.

    Google Scholar 

  44. C. H. Faerman and S. L. Price, manuscript in preparation.

    Google Scholar 

  45. A. D. Buckingham and P. W. Fowler,‘A model for the geometries of van der Waals complexes’, Canad. J. Chem., 63, 2018 (1985).

    Article  Google Scholar 

  46. G. J. B. Hurst, P. W. Fowler, A. J. Stone and A. D. Buckingham,‘Intermolecular forces in van der Waals dimers’, Int. J. Quant. Chem., 29, 1223 (1986).

    Article  Google Scholar 

  47. A. C. Legon and D. J. Millen,‘Directional character, strength and nature of the hydrogen bond in gas-phase dimers’, Ace. Chem. Res., 20, 39 (1987).

    Article  Google Scholar 

  48. U. C. Singh and P. A. Kollman,‘An approach to computing electrostatic charges for molecules’, J. Comput. Chem., 5, 129 (1984).

    Article  Google Scholar 

  49. S. R. Cox and D. E. Williams,‘Representation of the molecular electrostatic potential by a net atomic charge model’, J. Comput. Chem., 2, 304 (1981).

    Article  Google Scholar 

  50. D. E. Williams and R. R. Weiler,‘Lone-pair electronic effects on the calculated ab initio SCF-MO electric potential and the crystal structures of azabenzenes’, J. Amer. Chem. Soc., 105, 4143 (1983).

    Article  Google Scholar 

  51. R. Bonaccorsi, E. Scrocco and J. Tomasi,‘An approximate expression for the electrostatic molecular potential in terms of completely transferable group contributions’, J. Amer. Chem. Soc., 99, 4546 (1977).

    Article  Google Scholar 

  52. C. S. Murthy, S. F. O’Shea and I. R. McDonald,‘Electrostatic interactions in molecular crystals Lattice dynamics of solid nitrogen and carbon dioxide’, Molec Phys., 50, 531 (1983).

    Article  ADS  Google Scholar 

  53. M. T. Dove and R. M. Lynden-Bell,‘A model of the paraelectric phase of thiourea’, Philosophical Mag. B, 54, 443 (1986).

    Article  Google Scholar 

  54. S. C. Nyburg and C. H. Faerman,‘A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon’, Acta Cryst. B, 41, 274 (1985).

    Article  Google Scholar 

  55. S. L. Price,‘Is the isotropic atom-atom model potential adequate?’, Molec. Simulation, 1, 135 (1988).

    Article  Google Scholar 

  56. S. L. Price,‘The limitations of isotropic site-site potentials to describe a N2—N2 intermolecular potential surface’, Molec. Phys., 58, 651 (1986).

    Article  ADS  Google Scholar 

  57. J. T. Brobjer and J. N. Murrell,‘The intermolecular potential of HF’, Molec. Phys., 50, 885 (1983).

    Article  ADS  Google Scholar 

  58. S. L. Price and A. J. Stone,‘The anisotropy of the Cl2—Cl2 pair potential as shown by the crystal structure Evidence for intermolecular bonding or lone pair effects?’, Molec. Phys., 47, 1457 (1982).

    Article  ADS  Google Scholar 

  59. L.-Y. H. Hsu and D. E. Williams, ‘Potential energy models for nonbonding and bonding interactions in solid chlorine’, Inorganic Chem., 18, 79 (1979);

    Article  Google Scholar 

  60. L.-Y. H. Hsu and D. E. Williams, ‘Potential energy models for nonbonding and bonding interactions in solid chlorine’, Inorganic Chem., 19, 2200 (1980).

    Article  Google Scholar 

  61. S. C. Nyburg and W. Wong-Ng,‘Anisotropic atom-atom forces and the space group of solid chlorine’, Proc. Roy. Soc. A, 367, 29 (1979).

    Article  ADS  Google Scholar 

  62. S. L. Price,‘The structure of the homonuclear diatomic solids revisited -a distorted atom approach to the intermolecular potential’, Molec. Phys., 62, 45 (1987).

    Article  ADS  Google Scholar 

  63. F. P. Ricci, D. Rocca and R. Vallauri,‘A Monte Carlo simulation study of liquid chlorine’, Molec. Phys., 60, 1245 (1987).

    Article  ADS  Google Scholar 

  64. A. J. Stone,‘The description of bimolecular potentials, forces and torques: the S and V function expansions’, Molec. Phys., 36, 241 (1978).

    Article  ADS  Google Scholar 

  65. A. J. Stone, ‘Intermolecular forces’ in The molecular physics of liquid crystals, G. R. Luckhurst and G. W. Gray, eds., Academic press, 1979, ch. 2.

    Google Scholar 

  66. S. L. Price and A. J. Stone,‘A six-site intermolecular potential scheme for the azaben-zene molecules, derived by crystal structure analysis’, Molec. Phys., 51, 569 (1984).

    Article  ADS  Google Scholar 

  67. Busing W.R., WMIN, a computer program to model molecules and crystals in terms of potential energy functions, Oak Ridge National Laboratory Report ORNL-5747, 1981.

    Google Scholar 

  68. S. Yashoneth, S.L. Price and I. R. McDonald,‘A six-site anisotropic atom-atom potential model for the condensed phases of benzene’, Molec. Phys., 64, 361 (1988).

    Article  ADS  Google Scholar 

  69. D. E. Williams and S. R. Cox,‘Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction’, Acta Cryst. B, 40, 404 (1984).

    Article  Google Scholar 

  70. S. C. Nyburg, C. H. Faerman and L. Prasad,‘A revision of van der Waals atomic radii for molecular crystals II: hydrogen bonded to carbon’, Acta Cryst. B, 43, 106 (1987).

    Article  Google Scholar 

  71. S. L. Price,‘Model anisotropic intermolecular potentials for saturated hydrocarbons’, Acta Cryst. B, 42, 388 (1986).

    Article  ADS  Google Scholar 

  72. M. G. Munowitz, G. L. Wheeler and S. D. Colson,‘A critical evaluation of isotropic potential functions for chlorine Calculations on the three phases of p-dichlorobenzene at 100K’, Molec. Phys., 34, 1727 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Price, S.L. (1990). Towards Realistic Model Intermolecular Potentials. In: Catlow, C.R.A., Parker, S.C., Allen, M.P. (eds) Computer Modelling of Fluids Polymers and Solids. NATO ASI Series, vol 293. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2484-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2484-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7621-0

  • Online ISBN: 978-94-009-2484-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics