Skip to main content

Metal Contact Degradation on III–V Compound Semiconductors

  • Chapter
Semiconductor Device Reliability

Part of the book series: NATO ASI Series ((NSSE,volume 175))

  • 433 Accesses

Abstract

Discrete low noise MESFETs, power FETs as well as high speed digital GaAs ICs and monolithic microwave integrated circuits (MMICs) require a stable metal contact technology, low parasitic resistance and a high degree of reliability and reproducibility. Self-aligned gate FETs in digital GaAs integrated circuits require gates which must withstand a high temperature anneal treatment. For long term high temperature applications, stable Ohmic contacts are also required since present AuGe contacts are stable only up to about 350°C. A promising approach for achieving high reliability is through the use of a refractory Ohmic and Schottky contact technology based on amorphous (α-) metallization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Irvin, J.C. and Loya, A. (1978), Bell Syst. Tech. J., 57(8) pp. 2823–2846.

    Google Scholar 

  2. White, P.M., Hewitt, B.L. and Turner, J.S. (1978), “Reliability investigation of GaAs power FETs with Al gate”, Eur. Microwave Conf. Paris.

    Google Scholar 

  3. Christou, A. and Sleger, K. (1977), 6th Biennial Conf. on Active Microwave Semiconductor Devices and Circuits, Cornell.

    Google Scholar 

  4. Sinha, A.K. and Poate, J.M. (1973), Appl. Phys. Lett. 23, 666.

    Article  Google Scholar 

  5. Chino, K. and Wada, Y. (1977), Jpn. J. Appl. Phys. 16, 1823.

    Article  Google Scholar 

  6. Irie, T., Nagasaki, I., Kohzu, A. and Sekido, K. (1976), IEEE Trans. on Microwave Theory and Tech. MTT-24: 321.

    Google Scholar 

  7. Mizuishi, K., Kurono, H., Sato, H. and Kodera, H. (1979), IEEE Trans. Electron. Devices, ED-26: 1008.

    Article  Google Scholar 

  8. Kim, H.B., Sweeney, G.G. and Heng, T. (1974), Res. Lab. Rep. 74–1F6-IMPATT-P1, (Westinghouse Corporation).

    Google Scholar 

  9. Christou, A., Scanning Electron Microscopy 1979, Vol. 1, SEM Inc., AMF O’Hare, 1979.

    Google Scholar 

  10. Christou, A. (1976), J. Appl. Phys. 47, 5464.

    Article  Google Scholar 

  11. Calviello, J.A. and Wallace, J.L. (1977), IEEE trans. Ed-24, 698.

    Article  Google Scholar 

  12. Sleger, K. and Christou, A. (1978), Solid-state Electron. 21, 677–684.

    Article  Google Scholar 

  13. Chen, H.S., Kimerling, L.C., Poate, T.M. and Brown, W.L. (1978), Appl. Phys. Lett. 32, 461.

    Article  Google Scholar 

  14. Rosenblum, M.P., Spaepen, F. and Turnbull, D. (1980), Appl. Phys. Lett. 37, 184.

    Article  Google Scholar 

  15. Naka, M., Hashimoto, K., Masumoto, T. (1978), J. Non Cryst. Sol. 28, 403.

    Article  Google Scholar 

  16. Ohta, I., Hamana, T., Nishiuma, N., Hagio, M., Kazumura, M., Kano, G. and Teramoto, I. (1985), Inst. Phys. Conf. Ser. No 79: Chapter 9, 511.

    Google Scholar 

  17. Yokohama, N., Ohnishi, T., Orodera, H., Shinoki, T., Shibatomi, A., and Ishikawa, H. (1983), “A GaAs IK Static RAM using Tungsten-Silicide Gate Self-Alignment Technology”, IEEE J. Solid-State Circuits SC-18, p.520.

    Google Scholar 

  18. Palmer, D.W., Draper, B.L., McBrayer, J.D., and White K.R. (Feb. 1978), “Active Device for High Temperature Microcircuitry”, Sandia Laboratoiries Report SAND 77–1145.

    Book  Google Scholar 

  19. Behle, A.F., and Zuleeg, R. (Oct. 1979), “High Temperature GaAs Device Development”, McDonnell Douglas Final Report to Sandia, Contract No. 13–0319.

    Google Scholar 

  20. Coquat, J.A., Palmer, D.W., Eknoyan, O., and Van der Hoeven, W.B. (1980), “GaAs Ohmic Contacts for High Temperature Devices”, 1980 Proc. Elec. Components Conf. p.55.

    Google Scholar 

  21. General Electric, Phase 1 Final Report (March, 1980), Contract No. N00173–79-C-0010.

    Google Scholar 

  22. Nieberding, W.C. and Powell, J.A. (2 May 1982), “High Temperature Electronic Requirements in Aeropropulsion Systems”, IEEE Trans. on Industrial Electronics, IE-19, No.2, pp. 103–106.

    Google Scholar 

  23. Jurgens, R.F. (2 May 1982), “High Temperature Electronics Applications in Space Exploration”. IEEE Trans. on Industrial Electronics, IE-29, No. 2, pp. 107–111.

    Google Scholar 

  24. Doerbeck, F.H., Duncan, W.M., McLevige, W.V. and Yuan, H.T. (1982), “Fabrication and High-Temperature Characteristics of Ion-Implanted GaAs Bipolar Transistors and Ring-Oscillators”, IEEE Trans. on Industrical Electronics, IE-29, pp. 136–139.

    Article  Google Scholar 

  25. Wiley, J.D., Perepezko, J.H., Nordman, J.E., and Kang-Jin, G. (1982), “Amorphous Metallizations for High-Temperature Semiconductor Device Applications”, IEEE Trans. on Industrial Electronics IE-29, pp. 154–157.

    Google Scholar 

  26. Todd, A.G., Harris, P.G., Scobey, I.H., and Kelly, M.J. (1984), “Amorphous Metal-Semiconductors Contacts for High Temperature, Electronics-I, Materials and Characterization”, Solid State Electronics 27, pp. 507–513.

    Article  Google Scholar 

  27. Wickenden, D.K., Sisson, M.J., Todd, A.G., and Kelly, M.J. (1984), “Amorphous Metal-Semiconductor Contacts for High Temperature Electronics-II. Thermal Stability of Schottky Barrier Characteristics”, Solid State Electronics 27, pp. 515–518.

    Article  Google Scholar 

  28. Papanicolaou, N.A., Anderson, Jr. W.T. and Christou, A., (1983), “Small Signal MESFET with Sputtered Amorphous Metal Gate Defined by Lift-off”, Gallium Arsenide and Related Compounds 1982, Institute of Physics Conf. Series No. 65, (Institute of Physics, Bristol), pp. 407–414.

    Google Scholar 

  29. Morgan, D.V., Thomas, H., Anderson, W.T., Thompson, P., Christou A., and Diskett, D.J. (1988), “High Temperature Metallization for GaAs Devices Processing”, Phys. Stat. Sol. 110, pp. 531–536.

    Article  Google Scholar 

  30. Anderson, W.T. Jr., Christou, A., Giuliani, J.F. and Dietrich, H.B. (1982), “Laser Annealed and Thermal Annealed Refractory Ohmic Contacts to GaAs”, IEEE Trans. on Industrial Electronics, IE-29, pp. 149–453.

    Google Scholar 

  31. Anderson, W.T. Jr., Christou, A., Dietrich, H.B., and Giuliani, J.F. (1980), “Refractory Metallized Ion Implanted Epitaxial Ge-GaAs Ohmic Contacts”, 158th Meeting of the Electrochemical Society, Oct. 5–10, 1980, Hollywood, FL.

    Google Scholar 

  32. Anderson, W.T. Jr., Christou, A., and Davey, J.E., (1978), “Development of Ohmic Contacts for GaAs Devices using Epitaxial Ge Films”, IEEE J. of Solid State Circuits, SC-13, p. 430.

    Article  Google Scholar 

  33. Christou, A., Davey, J.E., Dietrich, H.B., and Anderson, W.T. Jr. (1979), “Refractory Passivated Ion Implanted Ohmic Contacts to n-GaAs Layers”, 37th Annual Device Research Conf., Univ. of Colorado at Boulder, Co., June 25–27, 1979.

    Google Scholar 

  34. Anderson, W.T. Jr. and Christou, A. (1980), “GaAs Transferred Electron Device Failure Mechanisms”, Workshop on Compound Semiconductors for Microwave Materials and Devices, San Francisco, CA, Feb. 1980.

    Google Scholar 

  35. Berger, H.H. (1972), “Contact Resistance and Contact Resistivity”, J. Electrochemical Society 119, p. 507.

    Article  Google Scholar 

  36. Chang, C.Y., Fang, Y.K. and Sze, S.M. (1971), “Specific Contact Resistance of Metal-Semiconductor Barriers”, Solid-State Electronics 14, pp. 541–550.

    Article  Google Scholar 

  37. Cullis, A.G., Webber, H.C. and Bailey, P. (1979), J. Phys. E. Sci. Instrum. 12, pp. 688–689.

    Article  Google Scholar 

  38. Giuliani, J.F. and Anderson, W.T. Jr. (1981), “Elimination of Micro-inhomogeities in a Ruby Laser Beam for Improved Semiconductor Device Processing”, Applied Optics 20, pp. 2497–2600.

    Article  Google Scholar 

  39. Cox, R.H. and Strack, H. (1967), “Ohmic Contacts for GaAs Devices”, Solid-State Electronics 10, pp. 1213–1218.

    Article  Google Scholar 

  40. Anderson, W.T., Christou, A., Thompson, P.E., Gossett, C.R., Eridon, J.M., Hatzopoulos, Z., Ethimiopoulos, T., Kudumas, M., Michelakis, C., and Morgan, D.V., (1989), “Laser Annealed Refractory Metal Suicide Films on GaAs”, Electronics Letters (submitted).

    Google Scholar 

  41. Morgan, D.V. Thomas, H. Anderson, W.T. Thomson, P. Christou A. and Diskett. D.J. (1987), Electron. Lett. (23) pp. 1154–1155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kiriakidis, G., Anderson, W.T., Hatzopoulos, Z., Michelakis, C., Morgan, D.V. (1990). Metal Contact Degradation on III–V Compound Semiconductors. In: Christou, A., Unger, B.A. (eds) Semiconductor Device Reliability. NATO ASI Series, vol 175. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2482-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2482-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7620-3

  • Online ISBN: 978-94-009-2482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics