Advertisement

Philosophy and the Sciences

  • Patrick Suppes
Chapter
Part of the Synthese Library book series (SYLI, volume 211)

Abstract

The great tradition in philosophy, from Aristotle to Kant, was that philosophy legislated the methodology and foundations of science. It can be claimed that, in spite of the many centuries separating Aristotle and Kant, it is still true that the three most important foundational works on science were Aristotle’s Posterior Analytics, with many points amplified in the Physics and the Metaphysics, Descartes’ Principles of Philosophy, and at the other end of the period the very specific working out of the foundations of physics in Kant’s Metaphysical Foundations of Natural Science, with the more general lines of argument being given in the Critique of Pure Reason. It is not difficult to trace the enormous impact of Kant on physics in the nineteenth century, especially German physics, and also psychology, even though Kant was skeptical of providing the kind of foundations for psychology he gave for physics.

Keywords

Joint Distribution Hide Variable Visual Space Joint Probability Distribution Riemannian Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev, V.M. (1969a). “Quasirandom dynamical systems. I. Quasirandom diffeomorphisms,” Mathematicheskie USSR Sbornik, 5, 73–128.CrossRefGoogle Scholar
  2. Alekseev, V.M. (1969b). “Quasirandom dynamical systems. II. One-dimensional nonlinear oscillations in a field with periodic perturbation,” Mathematicheskie USSR Sbornik, 6, 505–560.CrossRefGoogle Scholar
  3. Battro, A.M., Netto, S.P., & Rozestraten, R.J.A. (1976). “Riemannian geometries of variable curvature in visual space: Visual alleys, horopters, and triangles in big open fields,” Perception, 5, 9–23.CrossRefGoogle Scholar
  4. Bell, J.S. (1964). “On the Einstein Podolsky Rosen paradox,” Physics, 1, 195–200.Google Scholar
  5. Blank, A.A. (1953). “The Luneburg theory of binocular visual space,” Journal of the Optical Society of America, 43, 717–727.CrossRefGoogle Scholar
  6. Blank, A.A. (1957). “The geometry of vision,” British Journal of Physiological Optics, 14, 154–169, 213.Google Scholar
  7. Blank, A.A. (1958). “Analysis of experiments in binocular space perception,” Journal of the Optical Society of America, 48, 911–925.CrossRefGoogle Scholar
  8. Blank, A.A. (1961). “Curvature of binocular visual space. An experiment,” Journal of the Optical Society of America, 51, 335–339.CrossRefGoogle Scholar
  9. Blumenfeld, W. (1913). “Untersuchungen über die scheinbare Grösse in Schraume,” Zeitschrift fur Psychologie und Physiologie der Sinnesorgane, 65, 241–404.Google Scholar
  10. Busemann, H. (1955). The geometry of geodesics. New York: Academic Press.Google Scholar
  11. Clauser, J.F., Home, M.A., Shimony, A., & Holt, R.A. (1969). “Proposed experiment to test local hidden-variable theories,” Physical Review Letters, 23, 880–884.CrossRefGoogle Scholar
  12. Cutting, J.E. (1986). Perception with an eye for motion. Cambridge, MA: The MIT Press.Google Scholar
  13. Dembowski, P. (1968). Finite geometries. New York: Springer-Verlag.Google Scholar
  14. Fine, A. (1982). “Hidden variables, joint probability, and the Bell inequalities,” Physical Review Letters, 48, 291–295.CrossRefGoogle Scholar
  15. Foley, J.M. (1964a). “Desarguesian property in visual space,” Journal of the Optical Society of America, 54, 684–692.CrossRefGoogle Scholar
  16. Foley, J.M. (1964b). “Visual space: A test of the constant curvature hypothesis,” Psychonomic Science, 1, 9–10.Google Scholar
  17. Foley, J.M. (1972). “The size-distance relation and intrinsic geometry of visual space: Implications for processing,” Vision Research, 13, 323–332.CrossRefGoogle Scholar
  18. Freudenthal, H. (1965). “Lie groups in the foundations of geometry,” Advances in Mathematics, 1, 145–190.CrossRefGoogle Scholar
  19. Hardy, L.H., Rand, G., Rittler, M.C., Blank, A.A., & Boeder, P. (1953). The geometry of binocular space perception. Knapp Memorial Laboratories, Institute of Ophthamology, Columbia University College of Physicians and Surgeons.Google Scholar
  20. Helmholtz, H. von (1868). “Über die Thatsachen, die der Geometrie zu Grunde liegen,” Göttinger Nachrichten, 9, 193–221.Google Scholar
  21. Hillenbrand, F. (1902). “Theorie der scheinbaren Grösse bei binocularem Sehen,” Denkschriften d. Wiener Akademie d. Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 72, 255–307.Google Scholar
  22. Holland, P.W., & Rosenbaum, P.R. (1986). “Conditional association and unidimensionality in monotone latent variable models,” The Annals of Statistics, 14, 1523–1543.CrossRefGoogle Scholar
  23. Indow, T. (1967). “Two interpretations of binocular visual space: Hyperbolic and Euclidean,” Annals of the Japan Association for Philosophy of Science, 3, 51–64.Google Scholar
  24. Indow, T. (1968). “Multidimensional mapping of visual space with real and simulated stars,” Perception & Psychophysics, 3, 45–53.CrossRefGoogle Scholar
  25. Indow, T. (1974). “Applications of multidimensional scaling in perception.” In Handbook of perception, Vol. 2, Psychophysical judgment and measurement (pp. 493–531). New York: Academic Press.Google Scholar
  26. Indow, T. (1975). “An application of MDS to study of binocular visual space.” U.S.-Japan Seminar: Theory, methods and applications of multidimensional scaling and related techniques. University of California, August 20–24, San Diego, Calif.Google Scholar
  27. Indow, T. (1979). “Alleys in visual space,” Journal of Mathematical Psychology, 19, 221–258.CrossRefGoogle Scholar
  28. Indow, T. (1982). “An approach to geometry of visual space with no a priori mapping functions: Multidimensional mapping according to Riemannian metrics,” Journal of Mathematical Psychology, 26, 204–236.CrossRefGoogle Scholar
  29. Indow, T., Inoue, E., & Matsushima, K. (1962a). “An experimental study of the Luneburg theory of binocular space perception (1). The 3- and 4-point experiments,” Japanese Psychological Research, 4, 6–16.Google Scholar
  30. Indow, T., Inoue, E., & Matsushima, K. (1962b). “An experimental study of the Luneburg theory of binocular space perception (2). The alley experiments,” Japanese Psychological Research, 4, 17–24.Google Scholar
  31. Indow, T., Inoue, E., & Matsushima, K. (1963). “An experimental study of the Luneburg theory of binocular space perception (3): The experiments in a spacious field,” Japanese Psychological Research, 5, 10–27.Google Scholar
  32. Lie, S. (1886). “Bemerkungen zu Helmholtz’ Arbeit über die Thatsachen, die der Geometrie zu Grunde liegen,” Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physikalische Classe, 38, 337–342.Google Scholar
  33. Luneburg, R.K. (1947). Mathematical analysis of binocular vision. Princeton, NJ: Princeton University Press.Google Scholar
  34. Luneburg, R.K. (1948). “Metric methods in binocular visual perception.” In Studies and essays, (pp. 215–240). New York: Interscience.Google Scholar
  35. Luneburg, R.K. (1950). “The metric of binocular visual space,” Journal of the Optical Society of America, 40, 627–642.CrossRefGoogle Scholar
  36. Matsushima, K., & Noguchi, H. (1967). “Multidimensional representation of binocular visual space,” Japanese Psychological Research, 9, 83–94.Google Scholar
  37. Montague, R. (1974). “Deterministic theories.” Reprinted in R.H. Thomason (Ed.), Formal philosophy: Selected papers of Richard Montague, (pp. 332–336). New Haven: Yale Press.Google Scholar
  38. Moser, J. (1973). Stable and random motions in dynamical systems with special emphasis on celestial mechanics. Hermann Weyl Lectures, the Institute for Advanced Study. Princeton, NJ: Princeton University Press.Google Scholar
  39. Nishikawa, Y. (1967). “Euclidean interpretation of binocular visual space,” Japanese Psychological Research, 9, 191–198.Google Scholar
  40. Pirenne, M.H. (1975). “Vision and art.” In E.C. Carterette & M.P. Friedman (eds.), Handbook of perception, Vol. 5, 434–490.Google Scholar
  41. Riemann, B. (1854). “Über die Hypothesen, welche der Geometrie zu Grunde liegen,” Gesellschaft der Wissenschaften zu Göttingen: Abhandlungen, 1866–67, 13, 133–142.Google Scholar
  42. Sitkinov, K. (1960). “Existence of oscillating motions for the three-body problem,” Doklady Akademii Nauk, USSR, 133(2), 303–306.Google Scholar
  43. Suppes, P. (1977). “Is visual space Euclidean?” Synthese, 35, 397–421.CrossRefGoogle Scholar
  44. Suppes, P., & Zanotti, M. (1981). “When are probabilistic explanations possible?” Synthese, 48, 191–199.CrossRefGoogle Scholar
  45. Szczerba, L.W. (1984). “Imbedding of finite planes,” Potsdamer Forschungen, Reihe B Heft, 41, 99–102.Google Scholar
  46. Szczerba, L.W., & Tarski, A. (1979). “Metamathematical discussion of some affine geometries,” Fundamenta Mathematicae, 104, 115–192.Google Scholar
  47. Wagner, M. (1985). “The metric of visual space,” Perception & Psychophysics, 38, 483–495.CrossRefGoogle Scholar
  48. Weyl, H. (1923). Mathematische Analyse des Raumproblems. Berlin: Springer.Google Scholar
  49. Zajaczkowska, A. (1956a). “Experimental determination of Luneburg’s constants σ and K,” Quarterly Journal of Experimental Psychology, 8, 66–78.CrossRefGoogle Scholar
  50. Zajaczkowska, A. (1956b). “Experimental test of Luneburg’s theory. Horopter and alley experiments,” Journal of the Optical Society of America, 46, 514–527.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Patrick Suppes
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations