Skip to main content

A Self Energy Approach for Optical Transition Energies in Semiconductors and Superlattices

  • Chapter
Progress in Electron Properties of Solids

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 10))

  • 245 Accesses

Abstract

A quasiparticle self energy approach directly taking into account the many-body nature of the electron-electron interaction is described which gives an excellent account of the quasiparticle band energies in semiconductors and insulators. The calculated gaps are in excellent agreement with the absorption edge and higher energy features observed in optical probes of semiconductors e.g. Si, Ge, GaAs and AlAs. This first-principles approach can be extended with confidence to novel semiconductor materials such as superlattices which is illustrated here for the Si/Ge strained layer superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, M.L. Cohen and J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer, New York (1988).

    Google Scholar 

  2. L.J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983)

    Article  ADS  Google Scholar 

  3. Phys. Rev. B 32, 3883 (1985).

    Article  ADS  Google Scholar 

  4. M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett. 55, 1418 (1985)

    Article  ADS  Google Scholar 

  5. Phys. Rev. B 34, 5390 (1986).

    Article  ADS  Google Scholar 

  6. R.W. Godby, M. Schlüter and L.J. Sham, Phys. Rev. Lett. 56, 2415 (1986)

    Article  ADS  Google Scholar 

  7. Phys. Rev. B 37, 10159 (1988).

    Article  ADS  Google Scholar 

  8. R.W. Godby, M. Schlüter and L.J. Sham, Phys. Rev. B 35, 4170 (1987).

    Article  ADS  Google Scholar 

  9. M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett. 58, 1551 (1987)

    Article  ADS  Google Scholar 

  10. Phys. Rev. B 38, 4033 (1988).

    Article  ADS  Google Scholar 

  11. M.S. Hybertsen and M. Schlüter, Phys. Rev. B 36, 9683 (1987).

    Article  ADS  Google Scholar 

  12. S.B. Zhang, et al., Solid State Comm. 66, 585 (1988).

    Article  ADS  Google Scholar 

  13. See, for example, S.G. Louie in Electronic Structure Dynamics and Quantum Structural Properties of Condensed Matter, edited by J. Devreese and P. van Camp (Plenum, New York, 1985) pp. 335.

    Google Scholar 

  14. L. Hedin and S. Lundquist, Solid State Phys. 23, 1 (1969).

    Article  Google Scholar 

  15. R. Resta and A. Baldereschi, Phys. Rev. B 23, 6615 (1981).

    Article  ADS  Google Scholar 

  16. M.S. Hybertsen and S.G. Louie, Phys. Rev. B 35, 5602 (1987).

    Article  ADS  Google Scholar 

  17. M.S. Hybertsen and S.G. Louie, Phys. Rev. B 35, 5585 (1987).

    Article  ADS  Google Scholar 

  18. W. von der Linden and P. Horsch, Phys. Rev. B 37, 8351 (1988).

    Article  ADS  Google Scholar 

  19. M.S. Hybertsen and S.G. Louie, Phys. Rev. B 37, 2733 (1988).

    Article  ADS  Google Scholar 

  20. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, in Vol. III of Landolt-Bornstein (Springer, New York, 1982) pt. 17a; see also Refs. 3–5.

    Google Scholar 

  21. F. Gygi and A. Baldereschi, Phys. Rev. Lett. 62, 2160 (1989).

    Article  ADS  Google Scholar 

  22. T.P. Pearsall, et al., Phys. Rev. Lett. 58, 729 (1987).

    Article  ADS  Google Scholar 

  23. M.S. Hybertsen et al., Phys. Rev. B 37, 10195 (1988).

    Article  ADS  Google Scholar 

  24. M.S. Hybertsen and M. Schlüter, in Epitaxy of Semiconductor Layered Structures, edited by R.T. Tung, L.R. Dawson and R.L. Gunshor (Materials Research Society, Pittsburgh, 1988) pp. 413–418.

    Google Scholar 

  25. M.S. Hybertsen, P. Friedel and M. Schlüter, Proc. of the Nineteenth Int. Conf. on the Physics of Semiconductors, Warsaw, 1988, Institute of Physics, Polish Academy of Sciences, Warsaw, (1988) p. 491.

    Google Scholar 

  26. D. Gershoni, et al., Phys. Rev. Lett. 60, 448 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schlüter, M., Hybertsen, M.S. (1989). A Self Energy Approach for Optical Transition Energies in Semiconductors and Superlattices. In: Doni, E., Girlanda, R., Parravicini, G.P., Quattropani, A. (eds) Progress in Electron Properties of Solids. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2419-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2419-2_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7590-9

  • Online ISBN: 978-94-009-2419-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics